Graphs:
Shortest Paths
(Chapter 9)

CSE 373
Data Structures and Algorithms

Today’s Outline

• Admin:
 – Homework #4 - due Thurs, Nov 8th at 11pm
 – Midterm 2, Fri Nov 16
• Graphs
 – Graph Traversals
 – Shortest Paths

Single source shortest paths

• Done: BFS to find the minimum path length from v to u in $O(|E|+|V|)$
• Actually, can find the minimum path length from v to every node
 – Still $O(|E|+|V|)$
 – No faster way for a “distinguished” destination in the worst-case
• Now: Weighted graphs
 Given a weighted graph and node v,
 find the minimum-cost path from v to every node
• As before, asymptotically no harder than for one destination
• Unlike before, BFS will not work

Applications

– Network routing
– Driving directions
– Cheap flight tickets
– Critical paths in project management
 (see textbook)
– …

Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges
 – Annoying when this happens with costs of flights

We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Next algorithm we will learn is wrong if edges can be negative

Edsger Wybe Dijkstra
(1930-2002)

• Legendary figure in computer science; was a professor at University of Texas.
• Invented concepts of structured programming, synchronization, and "semaphores" for controlling computer processes.
• Supported teaching programming without computers (pencil and paper)
• 1972 Turing Award
• "computer science is no more about computers than astronomy is about telescopes"
Dijkstra’s Algorithm

The idea: reminiscent of BFS, but adapted to handle weights
 • A priority queue will prove useful for efficiency (later)
 • Will grow the set of nodes whose shortest distance has been computed
 • Nodes not in the set will have a “best distance so far”

Dijkstra’s Algorithm: Idea

• Initially, start node (A in this case) has “cost” 0 and all other nodes have “cost” ∞
• At each step:
 – Pick closest unknown vertex v
 – Add it to the “cloud” of known vertices
 – Update “costs” for nodes with edges from v
• That’s it! (Have to prove it produces correct answers)

The Algorithm

1. For each node v, set v.cost = ∞ and v.known = false
2. Set source.cost = 0
3. While there are unknown nodes in the graph
 a) Select the unknown node v with lowest cost
 b) Mark v as known
 c) For each edge (v, u) with weight w,
 c1 = v.cost + w // cost of best path through v to u
 c2 = u.cost // cost of best path to u previously known
 if(c1 < c2) { // if the path through v is better
 u.cost = c1
 u.path = v // for computing actual paths
 }

Important features

• Once a vertex is marked known, the cost of the shortest path to that node is known
 – As is the path itself
• While a vertex is still not known, another shorter path to it might still be found

Example #1

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Important features

- Once a vertex is marked ‘known’, the cost of the shortest path to that node is known.
 – As is the path itself.

- While a vertex is still not known, another shorter path to it might still be found.

Interpreting the results

- Now that we’re done, how do we get the path from, say, A to E?

Stopping Short

- How would this have worked differently if we were only interested in the path from A to G?
 – A to E?
vertex | known? | cost | path
---|---|---|---
A | Y | 0 |
B | ≤ 3 | E |
C | ≤ 2 | A |
D | ≤ 1 | A |
E | ≤ 4 | C |
F | ≤ 6 | D |
G | Y | 0 |
H | ≤ 5 | D |
I | ≤ 1 | A |
J | ≤ 2 | D |
K | ≤ 4 | C |
L | ≤ 6 | D |
Example #2

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>

Example #3

How will the best-cost-so-far for Y proceed?
Is this expensive?

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...
Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra’s algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
 - An example of a greedy algorithm:
 - at each step, irrevocably does what seems best at that step (once a vertex is in the known set, does not go back and readjust its decision)
 - Locally optimal – does not always mean globally optimal

Where are we?

- Have described Dijkstra’s algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
 - What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!
Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path
- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node “known”, then by induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t discover a shorter path later!
- This holds only because Dijkstra’s algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Idea)

- Suppose v is the next node to be marked known (“added to the cloud”)
 - The best-known path to v must have only nodes “in the cloud”
 - Since we’ve selected it, and we only know about paths through the cloud to a node right outside the cloud
 - Assume the actual shortest path to v is different
 - It won’t use only cloud nodes, (or we would know about it), so it must use non-cloud nodes
 - Let w be the first non-cloud node on this path.
 - The part of the path up to w is already known and must be shorter than the best-known path to v. So v would not have been picked. Contradiction.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time
- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    for each node: x.cost = infinity, x.known = false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b, a) in G
            if (a.known)
                if (b.cost + weight(b, a) < a.cost)
                    a.cost = b.cost + weight(b, a)
                    a.path = b
    }
}
```

Improving asymptotic running time

- So far: $O(V^2)$
- We had a similar “problem” with topological sort being $O(V^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?

```
dijkstra(Graph G, Node start) {
    for each node: x.cost = infinity, x.known = false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b, a) in G
            if (a.known)
                if (b.cost + weight(b, a) < a.cost)
                    a.cost = b.cost + weight(b, a)
                    a.path = b
    }
}
```

Improving (?) asymptotic running time

- So far: $O(V^2)$
- We had a similar “problem” with topological sort being $O(V^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support decrease-key operation
 - Must maintain a reference from each node to its position in the priority queue
 - Conceptually simple, but can be a pain to code up
Dense vs. sparse again

- First approach: $O(|V|^2)$
- Second approach: $O(|V|\log|V|+|E|\log|V|)$
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if $|E| > |V|$, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for “normal graphs”, we might call `decreaseKey` rarely (or not percolate far), making $|E|\log|V|$ more like $|E|$