Today’s Outline

- **Admin:**
 - Homework #4 - due Thurs, Nov 8th at 11pm
 - Midterm 2, Fri Nov 16

- **Graphs**
 - Representations
 - Topological Sort
 - Graph Traversals

Graphs:

Topological Sort / Graph Traversals (Chapter 9)

CSE 373

Data Structures and Algorithms

Topological Sort

Problem: Given a DAG \(G = (V, E) \), output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

```
CSE 142
CSE 143
```

Example output:

```
142, 143, 374, 373, 415, 413, 410, 417
```

Topological Sort

Problem: Given a DAG \(G = (V, E) \), output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

```
CSE 142
CSE 143
```

Example output:

```
142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352
```
Valid Topological Sorts:

Questions and comments

• Why do we perform topological sorts only on DAGs?
 – Because a cycle means there is no correct answer

• Is there always a unique answer?
 – No, there can be 1 or more answers; depends on the graph

• What DAGs have exactly 1 answer?
 – Lists

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

• Figuring out how to graduate
• Computing the order in which to recompute cells in a spreadsheet
• Determining the order to compile files using a Makefile
• In general, taking a dependency graph and coming up with an order of execution
A first algorithm for topological sort

1. Label each vertex with its in-degree
 - Labeling also called marking
 - Think "write in a field in the vertex", though you could also do this with a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled in-degree of 0
 b) Output \(v \) and "remove it" (conceptually) from the graph
 c) For each vertex \(u \) adjacent to \(v \) (i.e. \(u \) such that \((v, u) \) in \(E \)), decrement the in-degree of \(u \)

Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree: 0 2 1 1 1 1 1 1 1 1 1 1

Example

Output: 126 142

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree: 0 2 1 1 1 1 1 1 1 1 1 1

A couple of things to note

- Needed a vertex with in-degree of 0 to start
 - No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
 - Potentially many different correct orders

Topological Sort: Running time?

labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
 v = findNewVertexOfDegreeZero();
 put v next in output
 for each w adjacent to v
 w.indegree--;
}

• What is the worst-case running time?
 - Initialization $O(|V| + |E|)$
 - Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
 - Sum of all decrements $O(|E|)$ (assuming adjacency list)
 - So total is $O(|V|^2 + |E|)$ – not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!
- Keep the “pending” zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:
1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in G), decrement the in-degree of u, if new degree is 0, enqueue it
Optimized Topological Sort:

```java
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0) enqueue(w);
    }
}
```

- What is the worst-case running time?
 - Initialization: $O(|V| + |E|)$
 - Sum of all enqueues and dequeues: $O(|V|)$
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - So total is $O(|E| + |V|)$ – much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable (i.e., there exists a path) from v
- Possibly “do something” for each node (an iterator?)
 - E.g. Print to output, set some field, etc.

Related:
- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting node

Basic idea:
- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Graph Traversals: Abstract idea

```java
traverseGraph(Node start) {
    Set pending = emptySet();
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next {
            if(u is not marked) {
                mark u
                if(u is not marked) {
                    mark u
                    pending.add(u)
                }
            }
        }
    }
}
```
Running time and options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$

- The order we traverse depends entirely on add and remove
 - Popular choice: a stack “depth-first graph search” (DFS)
 - Popular choice: a queue “breadth-first graph search” (BFS)

- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first

Recursive DFS, Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
    mark and “process” (e.g. print) start
    for each node u adjacent to start
    if u is not marked
    DFS(u)
}
```

- Order processed: A, B, D, E, C, F, G, H
- Exactly what we called a “pre-order traversal” for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

Depth First Search (DFS) with a stack:

```
DFS2(Node start) {
    initialize stack s to hold start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and “process”
        for each node u adjacent to next
        if u is not marked
        mark u and push onto s
    }
}
```

- Order processed: A, C, F, H, G, B, E, D
- A different but perfectly fine traversal
Breadth First Search (BFS) with a queue:

```java
BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while (q is not empty) {
        next = q.dequeue() // and "process"
        for each node u adjacent to next
            if (u is not marked)
                mark u and enqueue onto q
    }
}
```

• Order processed:
• A "level-order" traversal

What if I want to find the “shortest” path?

• **Breadth-first** always finds shortest paths in terms of minimum number of edges from the starting node.

• **An aside: Depth-first** can use less space in finding a path:
 - If longest path in the graph is p and highest out-degree is d, then DFS stack never has more than d^p elements
 - But a queue for BFS may hold $O(|V|)$ nodes

BFS with a queue, Example: trees

```java
BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while (q is not empty) {
        next = q.dequeue() // and "process"
        for each node u adjacent to next
            if (u is not marked)
                mark u and enqueue onto q
    }
}
```

• Order processed: A, B, C, D, E, F, G, H
• A "level-order" traversal

Saving the path

• Our graph traversals can answer the “reachability question”:
 - "Is there a path from node x to node y?"

• Q: But what if we want to output the actual path?
 - Like getting driving directions rather than just knowing it’s possible to get there!

• A: Like this:
 - Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set $v.path$ field to be u)
 - When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Seattle
San Francisco
Dallas
Salt Lake City
Chicago
Tyler

Example using BFS

What is a path from Seattle to Tyler
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Seattle
San Francisco
Dallas
Salt Lake City
Chicago
Tyler