Graphs:
Topological Sort / Graph Traversals
(Chapter 9)

CSE 373
Data Structures and Algorithms

11/5/2012

Today's Outline

- Admin:
 - Homework #4 - due Thurs, Nov 8th at 11pm
 - Midterm 2, Fri Nov 16
- Graphs
 - Representations
 - Topological Sort
 - Graph Traversals

Topological Sort

Problem: Given a DAG \(G = (V,E) \), output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

Example output:

142, 143, 374, 373, 415, 413, 410, 417
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

Example output:

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

Questions and comments

- Why do we perform topological sorts only on DAGs?
- Is there always a unique answer?
- What DAGs have exactly 1 answer?
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it.
Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer
- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
- What DAGs have exactly 1 answer?
 - Lists
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to graduate
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution

A first algorithm for topological sort

1. Label each vertex with its in-degree
 - Labeling also called marking
 - Think “write in a field in the vertex”, though you could also do this with a data structure (e.g., array) on the side
2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and “remove it” (conceptually) from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u
Example

Output:

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Example

Output: 126 142

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
A couple of things to note

- Needed a vertex with in-degree of 0 to start
 - No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
 - Potentially many different correct orders
Topological Sort: Running time?

```java
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

- What is the worst-case running time?
 - Initialization \(O(|V| + |E|)\)
 - Sum of all find-new-vertex \(O(|V|^2)\) (because each \(O(|V|)\))
 - Sum of all decrements \(O(|E|)\) (assuming adjacency list)
 - So total is \(O(|V|^2 + |E|)\) – not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!
 - Keep the “pending” zero-degree nodes in a list, stack, queue, box, table, or something
 - Order we process them affects output but not correctness or efficiency provided add/remove are both \(O(1)\)

Using a queue:
1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) \(v = \text{dequeue}()\)
 b) Output \(v\) and remove it from the graph
 c) For each vertex \(u\) adjacent to \(v\) (i.e. \(u\) such that \((v,u)\) in \(E\)),
 decrement the in-degree of \(u\), if new degree is 0, enqueue it
Optimized Topological Sort:

```java
labelAllAndEnqueueZeros();
for (ctr = 0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if (w.indegree == 0) enqueue(w);
    }
}
```

- What is the worst-case running time?
 - Initialization: $O(|V| + |E|)$
 - Sum of all enqueues and dequeues: $O(|V|)$
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - So total is $O(|E| + |V|)$ – much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable (i.e., there exists a path) from v
 - Possibly “do something” for each node (an iterator!)
 - E.g. Print to output, set some field, etc.

Related:
- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting node

Basic idea:
- Keep following nodes
 - But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
Graph Traversals: Abstract idea

```java
traverseGraph(Node start) {
    Set pending = emptySet();
    mark start as visited
    pending.add(start)
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
            if(u is not marked) {
                mark u
                pending.add(u)
            }
    }
}
```

Running time and options

- Assuming add and remove are \(O(1)\), entire traversal is \(O(E)\)
- The order we traverse depends entirely on add and remove
 - Popular choice: a stack "depth-first graph search" (DFS)
 - Popular choice: a queue "breadth-first graph search" (BFS)
- DFS and BFS are "big ideas" in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first

Recursive DFS, Example: trees

- A tree is a graph and DFS and BFS are particularly easy to "see"

```java
DFS(Node start) {
    mark and "process" (e.g. print) start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

- Order processed: A, B, D, E, C, F, G, H
- Exactly what we called a "pre-order traversal" for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once
Depth First Search (DFS) with a stack:

DFS(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and "process"
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

• Order processed:

BFS with a queue:

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and "process"
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

• Order processed: A, B, D, E, C, F, H, G
• A "level-order" traversal
BFS with a queue, Example: trees

BFS (Node start) {
 initialize queue q to hold start
 mark start as visited
 while (q is not empty) {
 next = q.dequeue() // and "process"
 for each node u adjacent to next
 if (u is not marked)
 mark u and enqueue onto q
 }
}

- Order processed: A, B, C, D, E, F, G, H
- A "level-order" traversal

What if I want to find the “shortest” path?

- **Breadth-first** always finds shortest paths in terms of minimum number of edges from the starting node.

An aside: **Depth-first** can use less space in finding a path
- If longest path in the graph is \(p \) and highest out-degree is \(d \) then DFS stack never has more than \(d \times p \) elements
- But a queue for BFS may hold \(O(|V|) \) nodes

Saving the path

- Our graph traversals can answer the "reachability question":
 - *Is there a path from node x to node y?*
- Q: But what if we want to **output the actual path**?
 - Like getting driving directions rather than just knowing it’s possible to get there!
- A: Like this:
 - Instead of just “marking” a node, store the **previous node** along the path (when processing \(u \) causes us to add \(v \) to the search, set \(v.path \) field to be \(u \))
 - When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Example using BFS

What is a path from Seattle to Tyler
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique