Graphs: Definitions and Representations
(Chapter 9)

CSE 373
Data Structures and Algorithms

Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept
- A graph is a pair
 \(G = (V, E) \)
 - A set of vertices, also known as nodes
 \(V = \{v_1, v_2, \ldots, v_n\} \)
 - A set of edges
 \(E = \{e_1, e_2, \ldots, e_m\} \)
 - Each edge \(e_i \) is a pair of vertices
 \((v_j, v_k) \)
 - An edge "connects" the vertices
- Graphs can be directed or undirected

An ADT?

- Can think of graphs as an ADT with operations like
 \(\text{isEdge}(v_j, v_k) \)
- But what the "standard operations" are is unclear
- Instead we tend to develop algorithms over graphs and then use
 data structures that are efficient for those algorithms
- Many important problems can be solved by:
 1. Formulating them in terms of graphs
 2. Applying a standard graph algorithm
- To make the formulation easy and standard, we have a lot of
 standard terminology about graphs

Today’s Outline

- Admin:
 - Homework #4 - due Thurs, Nov 8th at 11pm
 - Midterm 2, Fri Nov 16
- Memory hierarchy
- Graphs
 - Representations
Some graphs

For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- "input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always "two-way"

Thus, \((u, v) \in E\) implies \((v, u) \in E\).
- Only one of these edges needs to be in the set; the other is implicit

- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Directed graphs

- In directed graphs (sometimes called digraphs), edges have a specific direction

Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).
- Let \((u, v) \in E\) mean \(u \rightarrow v\) and call \(u\) the source and \(v\) the destination

- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source

Self-edges, connectedness, etc.

- A self-edge, a.k.a. a loop, is an edge of the form \((u, u)\)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (in which case often implicit, but we will be explicit)

- A node can have a degree/in-degree/out degree of zero
- A graph does not have to be connected (in an undirected graph, this means we can follow edges from any node to every other node), even if every node has non-zero degree
More notation

For a graph \(G = (V, E) \):

- \(|V|\) is the number of vertices
- \(|E|\) is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?
- If \((u, v) \in E\)
 - Then \(v\) is a neighbor of \(u\),
 i.e., \(v\) is adjacent to \(u\)
 - Order matters for directed edges

Examples again

Which would use directed edges? Which would have self-edges?
Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Weighted graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples will use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many don’t

\[\begin{array}{cccc}
\text{Clinton} & \text{Mukilteo} & \text{Edmonds} & \text{Seattle} \\
20 & & & 30 \\
\text{Kingston} & \text{Seattle} & \text{Edmonds} & \\
30 & & & 35 \\
\text{Bremerton} & & & \end{array} \]
Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

Paths and Cycles

- A path is a list of vertices \([v_0, v_1, \ldots, v_n]\) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Say "a path from \(v_0\) to \(v_n\)"

- A cycle is a path that begins and ends at the same node \((v_0 = v_n)\)

Example path (that also happens to be a cycle):

Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle

Path Length and Cost

- Path length: Number of edges in a path (also called "unweighted cost")
- Path cost: sum of the weights of each edge

Example where:

\[P = \text{[Seattle, Salt Lake City, Chicago, Dallas, San Francisco]} \]

Simple paths and cycles

- A simple path repeats no vertices, (except the first might be the last):
 [Seattle, Salt Lake City, San Francisco, Dallas]
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

- Recall, a cycle is a path that ends where it begins:
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

- A simple cycle is a cycle and a simple path:
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
Paths/cycles in directed graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?

Paths/cycles in directed graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No

Undirected graph connectivity

• An undirected graph is connected if for all pairs of vertices u, v, there exists a path from u to v

Connected graph

Disconnected graph

• An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices u, v, there exists an edge from u to v

Directed graph connectivity

• A directed graph is strongly connected if there is a path from every vertex to every other vertex

• A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges

• A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex
Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Trees as graphs

When talking about graphs, we say a tree is a graph that is:
- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees

How does this relate to the trees we know and love?…

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)

Rooted Trees (Another example)

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)
Directed acyclic graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:

- Every DAG is a directed graph
 - But not every directed graph is a DAG:

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- …

Density / sparsity

- Recall: In an undirected graph, $0 \leq |E| \leq |V|^2$
- Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
- So for any graph, $|E| = O(|V|^2)$
- One more fact: If an undirected graph is connected, then $|E| \geq |V|-1$
- Because $|E|$ is often much smaller than its maximum size, we do not always approximate as $|E|$ as $O(|V|^2)$
- This is a correct bound, it just is often not tight
- If it is tight, i.e., $|E| = O(|V|^2)$, we say the graph is dense
 - More sloppily, dense means "lots of edges"
- If $|E| = O(|V|)$ we say the graph is sparse
 - More sloppily, sparse means "most (possible) edges missing"

What's the data structure?

Things we might want to do:
- iterate over vertices
- iterate over edges
- iterate over vertices adj. to a vertex
- check whether an edge exists
- find the lowest-cost path from x to y

Which data structure is "best" can depend on:
- properties of the graph (e.g., dense versus sparse)
- the common queries (e.g., "Is (u, v) an edge?" versus "what are the neighbors of node u?")

We need a data structure that represents graphs:
- List of vertices + list of edges (rarely good enough)
- Adjacency Matrix
- Adjacency List
Adjacency matrix

- Assign each node a number from 0 to \(|V| - 1\).
- A \(|V| \times |V|\) matrix (i.e., 2-D array) of booleans (or 1 vs. 0).
 - If \(M\) is the matrix, then \(M[u][v] == true\) means there is an edge from \(u\) to \(v\).

Adjacency matrix properties

- Running time to:
 - Get a vertex's out-edges: \(O(|V|)\)
 - Get a vertex's in-edges: \(O(|V|)\)
 - Decide if some edge exists: \(O(1)\)
 - Insert an edge: \(O(1)\)
 - Delete an edge: \(O(1)\)

- Space requirements:
 - \(|V|^2\) bits
 - Best for dense graphs

- Undirected: Will be symmetric about diagonal axis

- Instead of a boolean, store an int/double in each cell
- Need some value to represent 'not an edge'
 - Say -1 or 0
Adjacency List

- Assign each node a number from 0 to \(|V| - 1\)
- An array of length \(|V|\) in which each entry stores a list (e.g., linked list) of all adjacent vertices

Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges:
 - \(O(d)\) where \(d\) is out-degree of vertex
 - Get all of a vertex’s in-edges:
 - \(O(\ell)\) (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 - \(O(1)\)
 - Insert an edge:
 - \(O(1)\)
 - Delete an edge:
 - \(O(d)\) where \(d\) is out-degree of source

- Space requirements:
 - \(O(|V| + |E|)\)
- Best for sparse graphs: so usually just stick with linked lists

Adjacency List

- \(A\)
- \(B\)
- \(C\)
- \(D\)

Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges:
 - \(O(d)\) where \(d\) is out-degree of vertex
 - Get all of a vertex’s in-edges:
 - \(O(\ell)\) (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 - \(O(1)\)
 - Insert an edge:
 - \(O(1)\)
 - Delete an edge:
 - \(O(d)\) where \(d\) is out-degree of source

- Space requirements:
 - \(O(|V| + |E|)\)
- Best for sparse graphs: so usually just stick with linked lists

Undirected graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Could save space; only \(\sim 1/2\) the array is used
- Lists: Each edge in two lists to support efficient “get all neighbors”

Example:

- Adjacency matrix:
 - \(A\) to \(B\): True
 - \(B\) to \(C\): True
 - \(C\) to \(D\): True
 - \(D\) to \(A\): True

- Adjacency list:
 - \(A\) is connected to \(B\)
 - \(B\) is connected to \(A\) and \(C\)
 - \(C\) is connected to \(B\) and \(D\)
 - \(D\) is connected to \(A\)
Next…

Okay, we can represent graphs

Now let's implement some useful and non-trivial algorithms

• **Topological sort:** Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

• **Shortest paths:** Find the shortest or lowest-cost path from x to y
 – Related: Determine if there even is such a path