Today’s Outline

• Admin:
 – Homework #4 - due Thurs, Nov 8th at 11pm
 – Midterm 2, Fri Nov 16

• Memory hierarchy
• Graphs
 – Representations

Graphs

• A graph is a formalism for representing relationships among items
 – Very general definition because very general concept

• A graph is a pair
 \[G = (V, E) \]
 – A set of vertices, also known as nodes
 \[V = \{v_1, v_2, \ldots, v_n\} \]
 – A set of edges
 \[E = \{e_1, e_2, \ldots, e_m\} \]
 – Each edge \(e_i \) is a pair of vertices
 \[(v_j, v_k) \]
 – An edge “connects” the vertices

• Graphs can be directed or undirected
An ADT?

- Can think of graphs as an ADT with operations like
 `isEdge((v_j, v_k))`
- But what the “standard operations” are is unclear
- Instead we tend to develop algorithms over graphs and then use
data structures that are efficient for those algorithms
- Many important problems can be solved by:
 1. Formulating them in terms of graphs
 2. Applying a standard graph algorithm
- To make the formulation easy and standard, we have a lot of
 standard terminology about graphs

Some graphs

For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always “two-way”

Thus, \((u, v) \in E\) implies \((v, u) \in E\).
- Only one of these edges needs to be in the set; the other is
 implicit
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices
Directed graphs

- In directed graphs (sometimes called digraphs), edges have a specific direction

\[\text{Let } (u, v) \in E \text{ mean } u \rightarrow v \text{ and call } u \text{ the source and } v \text{ the destination} \]

- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source

Self-edges, connectedness, etc.

- A self-edge a.k.a. a loop is an edge of the form \((u, u)\)
- Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (in which case often implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected (In an undirected graph, this means we can follow edges from any node to every other node), even if every node has non-zero degree

More notation

For a graph \(G = (V, E) \):

- \(|V|\) is the number of vertices
- \(|E|\) is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?
- If \((u, v) \in E\)
 - Then \(v\) is a neighbor of \(u\)
 - i.e., \(v\) is adjacent to \(u\)
 - Order matters for directed edges
More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected? $|V| \cdot (|V|+1)/2 \in o(|V|^2)$
 - Maximum for directed? $|V|^2 \in O(|V|^2)$
 (assuming self-edges allowed, else subtract $|V|$)
- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges: In this example v is adjacent to u, but u is not adjacent to v (unless $(v, u) \in E$)

Examples again

Which would use directed edges? Which would have self-edges? Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Weighted graphs

- In a weighted graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples will use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many don’t
Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Paths and Cycles

- A path is a list of vertices \([v_0, v_1, ..., v_n]\) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Say "a path from \(v_0\) to \(v_n\)"

- A cycle is a path that begins and ends at the same node \((v_n = v_0)\)

Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

- Path length: Number of edges in a path (also called "unweighted cost")
- Path cost: sum of the weights of each edge

Example where:
P = [Seattle, Salt Lake City, Chicago, Dallas, San Francisco]

Seattle
\(\text{Length}(P) = 4\)
\(\text{Cost}(P) = 9.5\)
Simple paths and cycles

- A simple path repeats no vertices, (except the first might be the last):
 - [Seattle, Salt Lake City, San Francisco, Dallas]
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

- Recall, a cycle is a path that ends where it begins:
 - [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

- A simple cycle is a cycle and a simple path:
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths/cycles in directed graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?

No

Is there a path from A to D? No

Does the graph contain any cycles? No
Undirected graph connectivity

- An undirected graph is **connected** if for all pairs of vertices \(u, v \), there exists a path from \(u \) to \(v \).
- An undirected graph is **complete**, a.k.a. fully connected if for all pairs of vertices \(u, v \), there exists an edge from \(u \) to \(v \).

Directed graph connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.
- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex ignoring direction of edges.
- A **complete** a.k.a. fully connected directed graph has an edge from every vertex to every other vertex.

Examples

For **undirected** graphs: connected?
For **directed** graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …
Trees as graphs

When talking about graphs, we say a tree is a graph that is:
- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees.

How does this relate to the trees we know and love?

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)

Rooted Trees (Another example)

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)
Directed acyclic graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:

- Every DAG is a directed graph
- But not every directed graph is a DAG:

Examples

Which of our directed graph examples do you expect to be a DAG?

- Web pages with links
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- …

Density / sparsity

- Recall: In an undirected graph, \(0 \leq |E| < |V|^2\)
- Recall: In a directed graph, \(0 \leq |E| \leq |V|^2\)
- So for any graph, \(|E| = \Theta(|V|^2)\)
- One more fact: If an undirected graph is connected, then \(|E| \geq |V|-1\)
- Because \(|E|\) is often much smaller than its maximum size, we do not always approximate as \(|E|\) as \(\Theta(|V|^2)\)
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., \(|E| = \Theta(|V|^2)\), we say the graph is dense
 - More sloppily, dense means “lots of edges”
 - If \(|E| = O(|V|)\) we say the graph is sparse
 - More sloppily, sparse means “most (possible) edges missing”
What's the data structure?

Things we might want to do:
- iterate over vertices
- iterate over edges
- iterate over vertices adj. to a vertex
- check whether an edge exists
- find the lowest-cost path from x to y

Which data structure is "best" can depend on:
- properties of the graph (e.g., dense versus sparse)
- the common queries (e.g., "is (u, v) an edge?" versus "what are the neighbors of node u?")

We need a data structure that represents graphs:
- List of vertices + list of edges (rarely good enough)
- Adjacency Matrix
- Adjacency List

Adjacency matrix

- Assign each node a number from 0 to |V|–1
- A |V| x |V| matrix (i.e., 2-D array) of booleans (or 1 vs. 0)
 - If M is the matrix, then M[u][v] == true means there is an edge from u to v

Adjacency matrix properties

- Running time to:
 - Get a vertex’s out-edges:
 - Get a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:
- Space requirements:
 - Best for sparse or dense graphs?
Adjacency matrix properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits
- Best for dense graphs

Adjacency matrix properties (cont.)

- How will the adjacency matrix vary for an *undirected graph*?
 - Undirected: Will be symmetric about diagonal axis
- How can we adapt the representation for *weighted graphs*?
 - Instead of a boolean, store an int/double in each cell
 - Need some value to represent ‘not an edge’
 - Say -1 or 0

Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list (e.g., linked list) of all adjacent vertices
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex’s in-edges: $O(|E|)$ (but could keep a second adjacency list for this!)
 - Decide if some edge exists: $O(d)$ where d is out-degree of source
 - Insert an edge: $O(1)$
 - Delete an edge: $O(d)$ where d is out-degree of source

- Space requirements:
 - $O(|V|+|E|)$

- Best for sparse graphs; so usually just stick with linked lists

Undirected graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Could save space; only $\sim 1/2$ the array is used
- Lists: Each edge in two lists to support efficient “get all neighbors”

Example:
Next…

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

- **Shortest paths**: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path