Hashing

Chapter 5 in Weiss

CSE 373
Data Structures and Algorithms
Ruth Anderson

Today’s Outline

- **Announcements**
 - Homework #4 coming soon:
 - Java programming: disjoint sets and mazes
 - due Thurs, Nov 8th
 - partners allowed—MUST declare by 11pm Wed Oct 31st
 - Midterm #2 – Fri, Nov 16

- **Today’s Topics:**
 - Hashing

The Dictionary ADT

- **Data:**
 - a set of (key, value) pairs

- **Operations:**
 - Insert (key, value)
 - Find (key)
 - Remove (key)

Dictionary Implementations

For dictionary with n key/value pairs

- Insert: $O(1)$
- Find: $O(n)$
- Delete: $O(n)$

Hash Tables

- Constant time accesses!
- A **hash table** is an array of some fixed size, usually a prime number.
- General idea:

 ![Hash Table Diagram]

 - Key space (e.g., integers, strings)
 - TableSize = TableSize

Hash Tables

Key space of size M, but we only want to store subset of size N, where $N < M$

- Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
- Keys are student names. We want to look up student records quickly by name.
- Keys are chess configurations in a chess playing program.
- Keys are URLs in a database of web pages.
Example

- key space = integers
- TableSize = 10
- \(h(K) = K \mod 10 \)
- Insert: 7, 18, 41, 94

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
</table>

Another Example

- key space = integers
- TableSize = 6
- \(h(K) = K \mod 6 \)
- Insert: 7, 18, 41, 34

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

Hash Functions

1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed even among cells.

Perfect Hash function:

Sample Hash Functions:

- key space = strings
- \(s = s_0 \ s_1 \ s_2 \ldots \ s_{k-1} \)

1. \(h(s) = s_0 \mod \) TableSize
2. \(h(s) = \left(\sum_{i=0}^{k-1} s_i \right) \mod \) TableSize
3. \(h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37 \right) \mod \) TableSize

Designing a Hash Function for web URLs

\(s = s_0 \ s_1 \ s_2 \ldots \ s_{k-1} \)

Issues to take into account:

\(h(s) = \)

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double hashing)
Separate Chaining

- Separate chaining: All keys that map to the same hash value are kept in a list ("bucket").

Analysis of find

- The load factor, λ, of a hash table is the ratio:

 \[
 \lambda = \frac{\text{no. of elements}}{\text{table size}}
 \]

 For separate chaining, $\lambda = \text{average # of elements in a bucket}$

 - unsuccessful:
 - successful:

How big should the hash table be?

- For Separate Chaining:

Open Addressing

- Linear Probing: after checking spot $h(k)$, try spot $h(k)+1$, if that is full, try $h(k)+2$, then $h(k)+3$, etc.

Terminology Alert!

- “Open Hashing” equals “Open Addressing”
- “Closed Hashing” equals “Separate Chaining”
Linear Probing

\[f(i) = i \]

- Probe sequence:
 - 0th probe = \(h(k) \mod \text{TableSize} \)
 - 1st probe = \((h(k) + 1) \mod \text{TableSize} \)
 - 2nd probe = \((h(k) + 2) \mod \text{TableSize} \)

 \[\ldots \]
 - \(i \)th probe = \((h(k) + i) \mod \text{TableSize} \)

Load Factor in Linear Probing

- For any \(\lambda < 1 \), linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - successful search:
 \[\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)} \right) \]
 - unsuccessful search:
 \[\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right) \]
- Linear probing suffers from primary clustering
- Performance quickly degrades for \(\lambda > 1/2 \)

Quadratic Probing

\[f(i) = i^2 \]

- Probe sequence:
 - 0th probe = \(h(k) \mod \text{TableSize} \)
 - 1st probe = \((h(k) + 1) \mod \text{TableSize} \)
 - 2nd probe = \((h(k) + 4) \mod \text{TableSize} \)
 - 3rd probe = \((h(k) + 9) \mod \text{TableSize} \)

 \[\ldots \]
 - \(i \)th probe = \((h(k) + i^2) \mod \text{TableSize} \)

Quadratic Probing:

- \(h(k) = k \mod 7 \)
- Perform these inserts:
 - Insert(89)
 - Insert(18)
 - Insert(49)
 - Insert(58)
 - Insert(79)

Quadratic Probing:

- \(h(k) = k \mod 7 \)
- Perform these
 - Insert(85)
 - Insert(10)
 - Insert(47)

Insert:

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{array} \]

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{array} \]
Quadratic Probing Example

<table>
<thead>
<tr>
<th>Insert Value</th>
<th>Hash Value</th>
<th>Modulo 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>6</td>
<td>76%7 = 6</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>40%7 = 5</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>48%7 = 6</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>55%7 = 6</td>
</tr>
<tr>
<td>47</td>
<td>5</td>
<td>47%7 = 5</td>
</tr>
</tbody>
</table>

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - Show for all $0 \leq i, j \leq \text{size}/2$ and $i \neq j$:
 - $(h(x) + i^2) \mod \text{size} \neq (h(x) + j^2) \mod \text{size}$
 - By contradiction: suppose that for some $i \neq j$:
 - $(h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size}$
 - $i^2 \mod \text{size} = j^2 \mod \text{size}$
 - $(i^2 - j^2) \mod \text{size} = 0$
 - $(i + j)(i - j) \mod \text{size} = 0$
 - BUT size does not divide $(i-j)$ or $(i+j)$

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ, quadratic probing may find a slot
- Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad
- But what about keys that hash to the same spot? – Secondary Clustering!

Double Hashing

$f(i) = i \times g(k)$

where g is a second hash function

- Probe sequence:
 - 0th probe = $h(k) \mod \text{TableSize}$
 - 1st probe = $(h(k) + g(k)) \mod \text{TableSize}$
 - 2nd probe = $(h(k) + 2\times g(k)) \mod \text{TableSize}$
 - 3rd probe = $(h(k) + 3\times g(k)) \mod \text{TableSize}$
 ...
 - ith probe = $(h(k) + i\times g(k)) \mod \text{TableSize}$

Double Hashing Example

ith probe = $(h(k) + i\times g(k)) \mod \text{TableSize}$

$h(k) = k \mod 7$ and $g(k) = 5 - (k \mod 5)$

<table>
<thead>
<tr>
<th>Probe</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>93</td>
<td>40</td>
<td>47</td>
<td>10</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resolving Collisions with Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33
- 147
- 43
Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.