Hashing
Chapter 5 in Weiss

CSE 373
Data Structures and Algorithms
Ruth Anderson

Today’s Outline

• Announcements
 – Homework #4 coming soon:
 • Java programming: disjoint sets and mazes
 • due Thur, Nov 8th
 • partners allowed - MUST declare by 11pm Wed Oct 31st (email to Tanvir)
 – Midterm #2 – Fri, Nov 16
• Today’s Topics:
 – Hashing

The Dictionary ADT

• Data:
 – a set of (key, value) pairs
 insert(tanvir, ...)

• Operations:
 – Insert (key, value)
 – Find (key)
 – Remove (key)
 find(swansond)
 * swansond
 David Swanson

The Dictionary ADT is sometimes called the “Map ADT”

Dictionary Implementations

For dictionary with n key/value pairs

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked-list</td>
<td>$O(1)$ *</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Unsorted array</td>
<td>$O(1)$ *</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>BST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVL Tree</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If we do not allow duplicate values to be inserted, we would need to do one work (a find operation) to check for a key’s existence before insertion.
Hash Tables

- Constant time accesses!
- A **hash table** is an array of some fixed size, usually a prime number.
- General idea:

 ![Hash Table Diagram]

 - Key space (e.g., integers, strings)
 - TableSize = TableSize

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

 hash function: \(h(K) \)

 Example

 - key space = integers
 - TableSize = 10
 - \(h(K) = K \mod 10 \)
 - **Insert**: 7, 18, 41, 94

Another Example

 - key space = integers
 - TableSize = 6
 - \(h(K) = K \mod 6 \)
 - **Insert**: 7, 18, 41, 34

Hash Tables

- Key space of size \(M \), but we only want to store subset of size \(N \), where \(N < M \).
 - Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
 - Keys are student names. We want to look up student records quickly by name.
 - Keys are chess configurations in a chess playing program.
 - Keys are URLs in a database of web pages.
Hash Functions

1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:

Sample Hash Functions:

- key space = strings
- \(s = s_0 s_1 s_2 \ldots s_{k-1} \)

1. \(h(s) = s_0 \mod \text{TableSize} \)
2. \(h(s) = \left(\sum_{i=0}^{k-1} s_i \right) \mod \text{TableSize} \)
3. \(h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37^i \right) \mod \text{TableSize} \)

Designing a Hash Function for web URLs

\(s = s_0 s_1 s_2 \ldots s_{k-1} \)

Issues to take into account:

\(h(s) = \)

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double hashing)
Separate Chaining

- **Insert:**
 - 10
 - 22
 - 107
 - 12
 - 42

- **Separate chaining:**
 All keys that map to the same hash value are kept in a list ("bucket").

Analysis of find

- The **load factor**, λ, of a hash table is the ratio:

 $\frac{N}{M}$ ← no. of elements ← table size

 For separate chaining, $\lambda = \text{average} \# \text{ of elements in a bucket}$

- unsuccessful:
- successful:

How big should the hash table be?

- For Separate Chaining:

tableSize: Why Prime?

- Suppose
 - data stored in hash table: 7160, 493, 60, 55, 321, 900, 810
 - $\text{tableSize} = 10$
 - data hashes to 0, 3, 0, 5, 1, 0, 0
 - $\text{tableSize} = 11$
 - data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends to have a pattern

Being a multiple of 11 is usually not the pattern ☹
Open Addressing

<table>
<thead>
<tr>
<th>0</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insert:
- 38
- 19
- 8
- 109
- 10

- **Linear Probing**: after checking spot $h(k)$, try spot $h(k)+1$, if that is full, try $h(k)+2$, then $h(k)+3$, etc.

Terminology Alert!

“Open Hashing” equals “Closed Hashing”
“Separate Chaining” equals “Open Addressing”

Linear Probing

$f(i) = i$

- **Probe sequence**:
 0th probe $= h(k) \mod \text{TableSize}$
 1st probe $= (h(k) + 1) \mod \text{TableSize}$
 2nd probe $= (h(k) + 2) \mod \text{TableSize}$
 . . .
 ith probe $= (h(k) + i) \mod \text{TableSize}$

Linear Probing – Clustering

[R. Sedgewick]
Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - successful search:
 \[\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right) \]
 - unsuccessful search:
 \[\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right) \]
- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda > 1/2$

Quadratic Probing

\[f(i) = i^2 \]

- Probe sequence:
 - 0th probe = $h(k) \mod \text{TableSize}$
 - 1st probe = $(h(k) + 1) \mod \text{TableSize}$
 - 2nd probe = $(h(k) + 4) \mod \text{TableSize}$
 - 3rd probe = $(h(k) + 9) \mod \text{TableSize}$
 - \ldots
 - i^{th} probe = $(h(k) + i^2) \mod \text{TableSize}$

Quadratic Probing:

- $h(k) = k \mod 7$
- Perform these inserts:
 - Insert(65)
 - Insert(10)
 - Insert(47)

Insert:

- 89
- 18
- 49
- 58
- 79
Quadratic Probing Example

<table>
<thead>
<tr>
<th>Insert</th>
<th>Hash (%)</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>47</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>But...</td>
<td></td>
<td>47%7 = 5</td>
</tr>
</tbody>
</table>

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ, quadratic probing may find a slot.
- Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad.
- But what about keys that hash to the same spot? – Secondary Clustering!

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - Show for all $0 \leq i, j \leq \frac{\text{size}}{2}$ and $i \neq j$:
 \[(h(x) + i^2) \mod \text{size} \neq (h(x) + j^2) \mod \text{size} \]
 - By contradiction: suppose that for some $i \neq j$:
 \[(h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size} \]
 \[i^2 \mod \text{size} = j^2 \mod \text{size} \]
 \[(i^2 - j^2) \mod \text{size} = 0 \]
 \[(i + j)(i - j) \mod \text{size} = 0 \]
 BUT size does not divide $(i - j)$ or $(i + j)$.

Double Hashing

\[f(i) = i \ast g(k) \]
where g is a second hash function.

- Probe sequence:
 - 0th probe = $h(k) \mod \text{TableSize}$
 - 1st probe = $(h(k) + g(k)) \mod \text{TableSize}$
 - 2nd probe = $(h(k) + 2g(k)) \mod \text{TableSize}$
 - 3rd probe = $(h(k) + 3g(k)) \mod \text{TableSize}$
 - ...
 - i^{th} probe = $(h(k) + ig(k)) \mod \text{TableSize}$
Double Hashing Example

i^th probe = \((h(k) + i \times g(k)) \mod \text{TableSize}\)

\(h(k) = k \mod 7\) and \(g(k) = 5 \mod (k \mod 5)\)

<table>
<thead>
<tr>
<th>Probes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76</td>
<td>93</td>
<td>40</td>
<td>47</td>
<td>10</td>
<td>55</td>
</tr>
</tbody>
</table>

Resolving Collisions with Double Hashing

<table>
<thead>
<tr>
<th>Hash Functions:</th>
<th>(H_1(k) = k \mod M)</th>
<th>(H_2(k) = 1 + \lfloor (k/M) \mod (M-1) \rfloor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M =)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13, 28, 33, 147, 43

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full \((\lambda = 0.5)\)
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.