Hashing
Chapter 5 in Weiss

CSE 373
Data Structures and Algorithms
Ruth Anderson

Today’s Outline

- Announcements
 - Homework #4 coming soon:
 - Java programming: disjoint sets and mazes
 - due Thurs, Nov 8th
 - partners allowed- MUST declare by 11pm Wed Oct 31st
 (email to Tanvir)
 - Midterm #2 – Fri, Nov 16
- Today’s Topics:
 - Hashing

The Dictionary ADT

- Data:
 - a set of (key, value) pairs
 - insert(tanvir, …)

- Operations:
 - Insert (key, value)
 - Find (key)
 - Remove (key)
 - find(swansond)
 - swansond David Swanson

The Dictionary ADT is sometimes called the "Map ADT"
Dictionary Implementations

For dictionary with n key/value pairs

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked-list</td>
<td>$O(1)$*</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Unsorted array</td>
<td>$O(1)$*</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>BST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVL Tree</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: If we do not allow duplicate values to be inserted, we would need to do $O(n)$ work (a find operation) to check for a key's existence before insertion.

Hash Tables

- Constant time accesses!
- A **hash table** is an array of some fixed size, usually a prime number.
- General idea:

 ![Hash Table Diagram](image)

 - **hash function**: $h(K)$
 - **key space** (e.g., integers, strings)
 - **TableSize** – 1

Key space of size M, but we only want to store subset of size N, where $N<<M$.

- Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
- Keys are student names. We want to look up student records quickly by name.
- Keys are chess configurations in a chess playing program.
- Keys are URLs in a database of web pages.
Example

- key space = integers
- TableSize = 10
- \(h(K) = K \mod 10 \)
- Insert: 7, 18, 41, 94

Another Example

- key space = integers
- TableSize = 6
- \(h(K) = K \mod 6 \)
- Insert: 7, 18, 41, 34

Hash Functions

1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed eveny among cells.

Perfect Hash function:
Sample Hash Functions:

- key space = strings
- $s = s_0 \ s_1 \ s_2 \ \ldots \ s_{k-1}$

1. $h(s) = s_0 \mod \text{TableSize}$
2. $h(s) = \left(\sum_{i=0}^{k-1} s_i \right) \mod \text{TableSize}$
3. $h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37^i \right) \mod \text{TableSize}$

Designing a Hash Function for web URLs

$s = s_0 \ s_1 \ s_2 \ \ldots \ s_{k-1}$

Issues to take into account:

$h(s) =$

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double hashing)
Separate Chaining

All keys that map to
the same hash value
are kept in a list
(“bucket”).

Analysis of find

- The load factor, λ, of a hash table is the ratio:
 \[\frac{N}{M} \]
 - N ← no. of elements
 - M ← table size
 - For separate chaining, $\lambda = \text{average # of elements in a bucket}$
 - unsuccessful:
 - successful:

How big should the hash table be?

- For Separate Chaining:
tableSize: Why Prime?

- Suppose
 - data stored in hash table: 7160, 493, 60, 55, 321, 900, 810
 - tableSize = 10
 data hashes to 0, 3, 0, 5, 1, 0, 0
 - tableSize = 11
 data hashes to 10, 9, 5, 0, 2, 0, 7

Real-life data tends to have a pattern

Being a multiple of 11 is usually *not* the pattern ☺

Open Addressing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Insert:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

- **Linear Probing**: after checking spot h(k), try spot h(k)+1, if that is full, try h(k)+2, then h(k)+3, etc.

Terminology Alert!

“**Open Hashing**” equals “Separate Chaining”
“Closed Hashing” equals “**Open Addressing**”
Linear Probing

- Probe sequence:
 0th probe = $h(k) \mod \text{TableSize}$
 1st probe = $(h(k) + 1) \mod \text{TableSize}$
 2nd probe = $(h(k) + 2) \mod \text{TableSize}$
 ...
 i^{th} probe = $(h(k) + i) \mod \text{TableSize}$

Linear Probing – Clustering

Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - successful search: $\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)$
 - unsuccessful search: $\frac{1}{2} \left(1 - \frac{1}{(1-\lambda)} \right)$
- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda > 1/2$
Quadratic Probing

\[f(i) = i^2 \]

- **Probe sequence:**
 - 0\(^{th}\) probe = \(h(k) \mod \text{TableSize} \)
 - 1\(^{st}\) probe = \((h(k) + 1) \mod \text{TableSize}\)
 - 2\(^{nd}\) probe = \((h(k) + 4) \mod \text{TableSize}\)
 - 3\(^{rd}\) probe = \((h(k) + 9) \mod \text{TableSize}\)
 - \ldots
 - \(i^{th}\) probe = \((h(k) + i^2) \mod \text{TableSize}\)

Quadratic Probing

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
</table>

Insert:

- 89
- 18
- 49
- 58
- 79

Quadratic Probing:

- \(h(k) = k \mod 7 \)
- Perform these inserts:
 - Insert(65)
 - Insert(10)
 - Insert(47)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>93</td>
<td></td>
<td></td>
<td>40</td>
<td>76</td>
</tr>
</tbody>
</table>
Quadratic Probing Example

Insertions:
- insert(76)
- insert(40)
- insert(48)
- insert(5)
- insert(55)
- insert(47)

Hashing:
- $76 \mod 7 = 6$
- $40 \mod 7 = 5$
- $48 \mod 7 = 6$
- $5 \mod 7 = 5$
- $55 \mod 7 = 6$
- $47 \mod 7 = 5$

But...

Quadratic Probing:

Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in $\frac{\text{size}}{2}$ probes or fewer.

- Show for all $0 \leq i, j \leq \frac{\text{size}}{2}$ and $i \neq j$:
 \[
 (h(x) + i^2) \mod \text{size} \neq (h(x) + j^2) \mod \text{size}
 \]

- By contradiction: suppose that for some $i \neq j$:
 \[
 (h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size}
 \]

 \[
 i^2 \mod \text{size} = j^2 \mod \text{size}
 \]

 \[
 (i^2 - j^2) \mod \text{size} = 0
 \]

 \[
 (i + j)(i - j) \mod \text{size} = 0
 \]

 BUT size does not divide $(i-j)$ or $(i+j)$.

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ, quadratic probing may find a slot.

- Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad.

- But what about keys that hash to the same spot? Secondary Clustering!
Double Hashing

\[f(i) = i \times g(k) \]

where \(g \) is a second hash function

- Probe sequence:
 - 0th probe = \(h(k) \mod \text{TableSize} \)
 - 1st probe = \((h(k) + g(k)) \mod \text{TableSize} \)
 - 2nd probe = \((h(k) + 2g(k)) \mod \text{TableSize} \)
 - 3rd probe = \((h(k) + 3g(k)) \mod \text{TableSize} \)
 - \(i^{th} \) probe = \((h(k) + i \times g(k)) \mod \text{TableSize} \)

Double Hashing Example

\[h(k) = k \mod 7 \text{ and } g(k) = 5 - (k \mod 5) \]

Probes 1

Resolving Collisions with Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147
43

Hash Functions:

\[H(k) = k \mod M \]
\[H_2(k) = 1 + (k/M) \mod (M-1) \]

M =
Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.