Today’s Outline

• Announcements
 – Assignment #1, due Thurs, Oct 4 at 11pm
 – Assignment #2, posted later this week, due Fri Oct 12 at BEGINNING of lecture

• Algorithm Analysis
 – Big-Oh
 – Analyzing code

Ignoring constant factors

• So binary search is $O(\log n)$ and linear search is $O(n)$
 – But which is faster?

• Could depend on constant factors:
 – How many assignments, additions, etc. for each n
 • E.g. $T(n) = 5,000,000n$ vs. $T(n) = 5n^2$
 – And could depend on size of n (if n is small then constant additive factors could be more important)
 • E.g. $T(n) = 5,000,000 \log n$ vs. $T(n) = 10 + n$

• But there exists some n_0 such that for all $n > n_0$ binary search wins
• Let’s play with a couple plots to get some intuition…

Linear Search vs. Binary Search

Let’s try to “help” linear search:
• Run it on a computer 100x as fast (say 2010 model vs. 1990)
• Use a new compiler/language that is 3x as fast
• Be a clever programmer to eliminate half the work
• So doing each iteration is 600x as fast as in binary search

For small n, linear search is faster! But eventually binary search wins.

Asymptotic notation

About to show formal definition of Big-O, which amounts to saying:
1. Eliminate low order terms
2. Eliminate coefficients

Examples:

- $4n + 5$
- $0.5n \log n + 2n + 7$
- $n^2 + 2^n + 3n$
- $n \log (10n^2)$

Examples

True or false?
1. $4+3n$ is $O(n)$
2. $n-2\log n$ is $O(\log n)$
3. $\log n+2$ is $O(1)$
4. n^{5} is $O(1.1^{n})$
Examples

True or false?

1. $4+3n$ is $O(n)$ \(\text{True} \)
2. $n+2\log n$ is $O(\log n)$ \(\text{False} \)
3. $\log n + 2$ is $O(1)$ \(\text{False} \)
4. n^{50} is $O(1.1^n)$ \(\text{True} \)

Big-Oh relates functions

We use O on a function $f(n)$ (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to $f(n)$.

So $(3n^3+17)$ is in $O(n^3)$

- $3n^3+17$ and n^3 have the same asymptotic behavior.

Confusingly, we also say/write:

- $(3n^3+17)$ is $O(n^3)$
- $(3n^3+17) \in O(n^3)$
- $(3n^3+17) = O(n^3)$

But we would never say $O(n^2) = (3n^3+17)$.

Formally Big-Oh

Definition: $g(n)$ is in $O(f(n))$ if there exist positive constants c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$

To show $g(n)$ is in $O(f(n))$, pick a c large enough to “cover the constant factors” and n_0 large enough to “cover the lower-order terms.”

- Example: Let $g(n) = 3n^3+17$ and $f(n) = n^3$.
 - $c = 5$ and $n_0 = 10$ is more than good enough.

This is “less than or equal to”

- So $3n^3+17$ is also $O(n^3)$ and $O(2n^3)$ etc.

Using the definition of Big-Oh (Example 1)

Given: $g(n) = 1000n$ and $f(n) = n^2$.

Prove: $g(n)$ is in $O(f(n))$.

- A valid proof is to find valid c and n_0.
- Try: $n_0 = 1000$, $c = 1$.
- Also: $n_0 = 1$, $c = 1000$.

Using the definition of Big-Oh (Example 2)

Given: $g(n) = 4n$ and $f(n) = n^2$.

Prove: $g(n)$ is in $O(f(n))$.

- A valid proof is to find valid c and n_0.
- When $n=4$, $g(n) = 16$ & $f(n) = 16$; this is the crossing over point.
- So we can choose $n_0 = 4$, and $c = 1$.
- Note: There are many possible choices: ex: $n_0 = 78$, and $c = 42$ works fine.

Using the definition of Big-Oh (Example 3)

Given: $g(n) = n^4$ and $f(n) = 2^n$.

Prove: $g(n)$ is in $O(f(n))$.

- A valid proof is to find valid c and n_0.
- One possible answer: $n_0 = 20$, and $c = 1$.
\[f(n) = \begin{cases} \Theta(n^2) & \text{if } g(n) \in \Theta(f(n)) \text{ and } g(n) \in \Omega(f(n)) \\ \Omega(n^2) & \text{if } g(n) \in \Omega(f(n)) \text{ and } g(n) \in \omega(f(n)) \\ \omega(n^2) & \text{if } g(n) \in \omega(f(n)) \text{ and } g(n) \in \Omega(f(n)) \\ \omega & \text{if } g(n) \in \omega(f(n)) \text{ and } g(n) \in \omega(f(n)) \\ \end{cases} \]
Which Function Grows Faster?

\[n^3 + 2n^2 \quad \text{vs.} \quad 100n^2 + 1000 \]

Which Function Grows Faster?

\[n^0.1 \quad \text{vs.} \quad \log n \]

Which Function Grows Faster?

\[5n^5 \quad \text{vs.} \quad n! \]
Nested Loops

for i = 1 to n do
 for j = 1 to n do
 sum = sum + 1
 for i = 1 to n do
 for j = 1 to n do
 sum = sum + 1

More Nested Loops

for i = 1 to n do
 for j = 1 to n do
 if (cond) {
 do_stuff(sum)
 } else {
 for k = 1 to n*n
 sum += 1

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for large n and is independent of any computer / coding trick
 - But you can "abuse" it to be misled about trade-offs
 - Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the 'cross-over' point is around 5×10^{17}
 - So if you have input size less than 2^{58}, prefer $n^{1/10}$
- Comparing O() for small n values can be misleading
 - Quicksort: $O(n \log n)$ (expected)
 - Insertion Sort: $O(n^2)$ (expected)
 - Yet in reality Insertion Sort is faster for small n's
 - We'll learn about these sorts later

Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
 - Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards
 - We will do some timing in our homeworks
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful