Today’s Outline

• Announcements
 – Assignment #1, due Thurs, Oct 4 at 11pm
 – Assignment #2, posted later this week, due Fri Oct 12 at BEGINNING of lecture

• Algorithm Analysis
 – Big-Oh
 – Analyzing code

Ignoring constant factors

• So binary search is $O(\log n)$ and linear search is $O(n)$
 – But which is faster?

• Could depend on constant factors:
 – How many assignments, additions, etc. for each n
 • E.g. $T(n) = 5,000,000n$ vs. $T(n) = 5n^2$
 – And could depend on size of n (if n is small then constant additive factors could be more important)
 • E.g. $T(n) = 5,000,000 + \log n$ vs. $T(n) = 10 + n$

• But there exists some n_0 such that for all $n > n_0$ binary search wins
• Let’s play with a couple plots to get some intuition...
Linear Search vs. Binary Search

Let’s try to “help” linear search:
• Run it on a computer 100x as fast (say 2010 model vs. 1990)
• Use a new compiler/language that is 3x as fast
• Be a clever programmer to eliminate half the work
• So doing each iteration is 600x as fast as in binary search

For small n, linear search is faster! But eventually binary search wins.

Asymptotic notation

About to show formal definition of Big-O, which amounts to saying:
1. Eliminate low-order terms
2. Eliminate coefficients

Examples:
- \(4n + 5\)
- \(0.5n \log n + 2n + 7\)
- \(n^2 + 2^n + 3n\)
- \(n \log (10n^2)\)

Examples

True or false?
1. 4+3n is O(n)
2. n+2logn is O(logn)
3. logn+2 is O(1)
4. \(n^{50}\) is O(1.1^n)
Examples

True or false?

1. 4 + 3n is O(n)
 True

2. n = 2 log n is O(log n)
 True

3. log n + 2 is O(1)
 False

4. n^3 is O(1/n)
 False

Big-Oh relates functions

We use O on a function $f(n)$ (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to $f(n)$

So $(3n^2 + 17)$ is in $O(n^2)$
- $3n^2 + 17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:
- $(3n^2 + 17) \in O(n^2)$
- $(3n^2 + 17) \subseteq O(n^2)$
- $(3n^2 + 17) = O(n^2)$

But we would never say $O(n^2) = (3n^2 + 17)$

Formally Big-Oh

Definition: $g(n)$ is in $O(f(n))$ if there exist positive constants c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$

To show $g(n)$ is in $O(f(n))$, pick a c large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order terms"
- Example: Let $g(n) = 3n^2 + 17$ and $f(n) = n^3$
 - $c = 5$ and $n_0 = 10$ is more than good enough

This is "less than or equal to"
- So $3n^2 + 17$ is also $O(n^2)$ and $O(2^n)$ etc.
Using the definition of Big-Oh (Example 1)

Given: \(g(n) = 1000n \) & \(f(n) = n^2 \)
Prove: \(g(n) \) is in \(O(f(n)) \)

- A valid proof is to find valid \(c \) & \(n_0 \)
- Try: \(n_0 = 1000 \), \(c = 1 \)
- Also: \(n_0 = 1 \), \(c = 1000 \)

\[g(n) \leq c f(n) \quad \text{for all } n \geq n_0 \]

Using the definition of Big-Oh (Example 2)

Given: \(g(n) = 4n \) & \(f(n) = n^2 \)
Prove: \(g(n) \) is in \(O(f(n)) \)

- A valid proof is to find valid \(c \) & \(n_0 \)
- When \(n=4 \), \(g(n) = 16 \) & \(f(n) = 16 \); this is the crossing over point
- So we can choose \(n_0 = 4 \), and \(c = 1 \)

Note: There are many possible choices:
- ex: \(n_0 = 78 \), and \(c = 42 \) works fine

Using the definition of Big-Oh (Example 3)

Given: \(g(n) = n^4 \) & \(f(n) = 2^n \)
Prove: \(g(n) \) is in \(O(f(n)) \)

- A valid proof is to find valid \(c \) & \(n_0 \)
- One possible answer: \(n_0 = 20 \), and \(c = 1 \)

Def'n:
\[g(n) \] is in \(O(f(n)) \) if there exist positive constants \(c \) and \(n_0 \) s.t.
\[g(n) \leq c f(n) \quad \text{for all } n \geq n_0 \]
What's with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:
 \[g(n) = 7n + 5 \]
 \[f(n) = n \]
- These have the same asymptotic behavior (linear), so \(g(n) \) is in \(O(f(n)) \) even though \(g(n) \) is always larger
- There is no positive \(n_0 \) such that \(g(n) \leq f(n) \) for all \(n \geq n_0 \)
- The 'c' in the definition allows for that:
 \(g(n) \leq c f(n) \) for all \(n \geq n_0 \)
- To prove \(g(n) \) is in \(O(f(n)) \), have \(c = 12, n_0 = 1 \)

Big Oh: Common Categories

From fastest to slowest:
- \(O(1) \) constant (same as \(O(k) \) for constant \(k \))
- \(O(\log n) \) logarithmic (\(\log_2 n, \log n \) is \(O(\log n) \))
- \(O(n) \) linear
- \(O(n \log n) \) “\(n \log n \)’
- \(O(n^2) \) quadratic
- \(O(n^k) \) cubic
- \(O(k^n) \) exponential (where \(k \) is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it means “grows at rate proportional to \(k^n \) for some \(k>1 \)”

More Definitions

- **Upper bound:** \(O(f(n)) \) is the set of all functions asymptotically less than or equal to \(f(n) \)
 - \(g(n) \) is in \(O(f(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that
 \[g(n) \leq c f(n) \] for all \(n \geq n_0 \)

- **Lower bound:** \(\Omega(f(n)) \) is the set of all functions asymptotically greater than or equal to \(f(n) \)
 - \(g(n) \) is in \(\Omega(f(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that
 \[g(n) \geq c f(n) \] for all \(n \geq n_0 \)

- **Tight bound:** \(\Theta(f(n)) \) is the set of all functions asymptotically equal to \(f(n) \)
 - \(g(n) \) is in \(\Theta(f(n)) \) if both:
 \[g(n) \text{ is in } O(f(n)) \text{ AND } \]
 \[g(n) \text{ is in } \Omega(f(n)) \]
Even More Definitions…

\(O(f(n)) \) is the set of all functions asymptotically less than or equal to \(f(n) \)

- \(g(n) \) is in \(O(f(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that
 \[g(n) \leq c f(n) \text{ for all } n \geq n_0 \]

\(\Omega(f(n)) \) is the set of all functions asymptotically less than \(f(n) \)

- \(g(n) \) is in \(\Omega(f(n)) \) if for any positive constant \(c \), there exists a positive constant \(n_0 \) such that
 \[g(n) \geq c f(n) \text{ for all } n \geq n_0 \]

\(\Theta(f(n)) \) is the set of all functions asymptotically greater than or equal to \(f(n) \)

- \(g(n) \) is in \(\Theta(f(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that
 \[c f(n) \leq g(n) \leq f(n) \text{ for all } n \geq n_0 \]

\(o(f(n)) \) is the set of all functions asymptotically less than \(f(n) \)

- \(g(n) \) is in \(o(f(n)) \) if for any positive constant \(c \), there exists a positive constant \(n_0 \) such that
 \[g(n) \leq c f(n) \text{ for all } n \geq n_0 \]

\(\omega(f(n)) \) is the set of all functions asymptotically greater than \(f(n) \)

- \(g(n) \) is in \(\omega(f(n)) \) if for any positive constant \(c \), there exists a positive constant \(n_0 \) such that
 \[g(n) \geq c f(n) \text{ for all } n \geq n_0 \]

Big-Omega et al. Intuitively

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>Mathematics Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O)</td>
<td>(\leq)</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>(\geq)</td>
</tr>
<tr>
<td>(\Theta)</td>
<td>(=)</td>
</tr>
<tr>
<td>(o)</td>
<td>(<)</td>
</tr>
<tr>
<td>(\omega)</td>
<td>(>)</td>
</tr>
</tbody>
</table>

Types of Analysis

Two orthogonal axes:

- bound flavor (usually we talk about upper or tight)
 - upper bound (\(O, o \))
 - lower bound (\(\Omega, \omega \))
 - asymptotically tight (\(\Theta \))

- analysis case (usually we talk about worst)
 - worst case (adversary)
 - average case
 - best case
 - "amortized"
Which Function Grows Faster?

\[n^3 + 2n^2 \quad \text{vs.} \quad 100n^2 + 1000 \]

Which Function Grows Faster?

\[n^{0.1} \quad \text{vs.} \quad \log n \]
Which Function Grows Faster?

\[n^{0.1} \quad \text{vs.} \quad \log n \]

Which Function Grows Faster?

\[5n^5 \quad \text{vs.} \quad n! \]

Which Function Grows Faster?
Nested Loops

for i = 1 to n do
 for j = 1 to n do
 sum = sum + 1

for i = 1 to n do
 for j = 1 to n do
 sum = sum + 1

More Nested Loops

for i = 1 to n do
 for j = 1 to n do
 if (cond) {
 do_stuff(sum)
 } else {
 for k = 1 to n*n
 sum += 1

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for large \(n \)
 and is independent of any computer / coding trick
 - But you can “abuse” it to be misled about trade-offs
 - Example: \(n^{1/10} \) vs. \(\log n \)
 - Asymptotically \(n^{1/10} \) grows more quickly
 - But the “cross-over” point is around \(5 \times 10^{17} \)
 - So if you have input size less than \(2^{58} \), prefer \(n^{1/10} \)
 - Comparing \(O() \) for small \(n \) values can be misleading
 - Quicksort: \(O(n \log n) \) (expected)
 - Insertion Sort: \(O(n^2) \) (expected)
 - Yet in reality Insertion Sort is faster for small \(n \)'s
 - We’ll learn about these sorts later
Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
- Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards
 - We will do some timing in our homeworks
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful