CSE 373: Data Structures and Algorithms

Lecture 23: Disjoint Sets
Kruskal's Algorithm Implementation

Kruskals():
 sort edges in increasing order of length \((e_1, e_2, e_3, ..., e_m)\).

 \[T := \{ \}. \]

 for \(i = 1\) to \(m\)
 if \(e_i\) does not add a cycle:
 add \(e_i\) to \(T\).

 return \(T\).

• But how can we determine that adding \(e_i\) to \(T\) won't add a cycle?
Disjoint-set Data Structure

• Keeps track of a set of elements partitioned into a number disjoint subsets
 – two sets are said to be disjoint if they have no elements in common

• Initially, each element \(e \) is a set in itself:
 – e.g., \{ {e_1}, {e_2}, {e_3}, {e_4}, {e_5}, {e_6}, {e_7} \}
Operations: Union

• Union(x, y) – Combine or merge two sets x and y into a single set
 – Before:
 \{\{e_3, e_5, e_7\}, \{e_4, e_2, e_8\}, \{e_9\}, \{e_1, e_6\}\}

 – After Union(e_5, e_1):
 \{\{e_3, e_5, e_7, e_1, e_6\}, \{e_4, e_2, e_8\}, \{e_9\}\}
Operations: Find

• Determine which set a particular element is in
 – Useful for determining if two elements are in the same set

• Each set has a unique name
 – name is arbitrary; what matters is that find(a) == find(b) is true only if a and b in the same set
 – one of the members of the set is the "representative" (i.e. name) of the set
 – \{e_3, e_5, e_7, e_1, e_6\}, \{e_4, e_2, e_8\}, \{e_9\}
Operations: Find

• Find(x) – return the name of the set containing x.
 – \{e_3, e_5, e_7, e_1, e_6\}, \{e_4, e_2, e_8\}, \{e_9\}
 – Find(e_1) = e_5
 – Find(e_4) = e_8
Kruskal's Algorithm
Implementation (Revisited)

\(\text{Kruskals()}: \)

\(\text{sort edges in increasing order of length } (e_1, e_2, e_3, \ldots, e_m). \)

\(\text{initialize disjoint sets.} \)

\(T := \{\}. \)

\(\text{for } i = 1 \text{ to } m \)

\(\text{let } e_i = (u, v). \)
\(\text{if } \text{find}(u) \neq \text{find}(v) \)
\(\text{union}(\text{find}(u), \text{find}(v)). \)
\(\text{add } e_i \text{ to } T. \)

\(\text{return } T. \)

- What does the disjoint set initialize to?
- How many times do we do a union?
- How many times do we do a find?
- What is the total running time if we have \(n \) nodes and \(m \) edges?
Disjoint Sets with Linked Lists

• Approach 1: Create a linked list for each set.
 – last/first element is representative
 – cost of union? find?

• Approach 2: Create linked list for each set. Every element has a reference to its representative.
 – last/first element is representative
 – cost of union? find?
Disjoint Sets with Trees

• Observation: *trees* let us find many elements given one root (i.e. representative)...

• Idea: if we *reverse* the pointers (make them point up from child to parent), we can find a single root from many elements...

• Idea: Use one tree for each subset. The name of the class is the tree root.
Up-Tree for Disjoint Sets

Initial state

1 2 3 4 5 6 7

Intermediate state

1 3

2

7

5

4

6

Roots are the names of each set.
Union Operation

- Union(x, y) – assuming x and y roots, point x to y.
Find Operation

- **Find(x):** follow \(x \) to root and return root

\[
\text{Find(6)} = 7
\]
Simple Implementation

• Array of indices

<table>
<thead>
<tr>
<th>up</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>7</th>
<th>7</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
</table>

Up[x] = 0 means x is a root.
Union

Union(up[] : integer array, x,y : integer) : {
 //precondition: x and y are roots/
 up[x] := y
}
Find

Find(up[] : integer array, x : integer) : integer {
 //precondition: x is in the range 1 to size
 if up[x] == 0
 return x
 else
 return Find(up, up[x])
}

• Exercise: write an iterative version of Find.
A Bad Case

1 2 3 ... n

Union(1,2)

2 3 ... n

Union(2,3)

:

:

Union(n-1, n)

1 2 3

Find(1) n steps!!
Improving Find

Can we do better? Yes!

1. Improve union so that \textit{find} only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$

2. Improve \textit{find} so that it becomes even better!
 - Path compression
 - Reduces complexity to $\textit{almost} \; \Theta(m + n)$
Union by Rank

• Union by Rank (also called Union by Size)
 – Always point the smaller tree to the root of the larger tree

Union(1,7)
Example Again

Union(1,2)

Union(2,3)

...:

Union(n-1,n)

Find(1) constant time
Improved Runtime for Find via Union by Rank

• Depth of tree affects running time of Find
• Union by rank only increases tree depth if depth were equal
• Results in $O(\log n)$ for Find
Elegant Array Implementation

```
up
weight
0 1 0 7 7 5 0
1 2 1 4
```
Union by Rank

Union(i,j : index) {
 //i and j are roots /
 wi := weight[i];
 wj := weight[j];
 if wi < wj then
 up[i] := j;
 weight[j] := wi + wj;
 else
 up[j] := i;
 weight[i] := wi + wj;
}
Kruskal's Algorithm Implementation (Revisited)

Kruskals():
sort edges in increasing order of length (e₁, e₂, e₃, ..., eₘ).

initialize disjoint sets.

\[T := \emptyset. \]

for \(i = 1 \) to \(m \)

 let \(e_i = (u, v) \).

 if \(\text{find}(u) \neq \text{find}(v) \)

 union(\(\text{find}(u) \), \(\text{find}(v) \)).

 add \(e_i \) to \(T \).

return \(T \).
Kruskal's Algorithm Running Time (Revisited)

- Assuming $|E| = m$ edges and $|V| = n$ nodes
- Sort edges: $O(m \log m)$
- Initialization: $O(n)$
- Finds: $O(2 \times m \times \log n) = O(m \log n)$
- Unions: $O(m)$

- Total running time: $O(m \log n + n + m \log n + m) = O(m \log n)$
 - note: $\log n$ and $\log m$ are within a constant factor of one another
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Self-Adjustment Works

PC-Find(x)
Path Compression Exercise:

- Draw the resulting up tree after Find(e) with path compression.
Path Compression Find

PC-Find(i : index) {
 r := i;
 while up[r] ≠ 0 do //find root
 r := up[r];
 if i ≠ r then //compress path
 k := up[i];
 while k ≠ r do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
}
Disjoint Union / Find with Union By Rank and Path Comp.

• Worst case time complexity for a Union using Union by Rank is $\Theta(1)$ and for Find using Path Compression is $\Theta(\log n)$.

• Time complexity for $m \geq n$ operations on n elements is $\Theta(m \log^* n)$
 – \log^* is the number of times you need to apply the log function before you get to a number ≤ 1
 – $\log^* n < 5$ for all reasonable n. Essentially constant time per operation!
Amortized Complexity

• For disjoint union / find with union by rank and path compression
 – average time per operation is essentially a constant
 – worst case time for a Find is $\Theta(\log n)$

• An individual operation can be costly, but over time the average cost per operation is not

• This means the bottleneck of Kruskal's actually becomes the sorting of the edges
Other Applications of Disjoint Sets

• Good for applications in need of clustering
 – cities connected by roads
 – cities belonging to the same country
 – connected components of a graph

• Forming equivalence classes (see textbook)

• Maze creation (see textbook)