CSE 373: Data Structures and Algorithms

Lecture 21: Graphs V
Dijkstra's algorithm

- **Dijkstra's algorithm**: finds shortest (minimum weight) path between a particular pair of vertices in a *weighted* directed graph with nonnegative edge weights
 - solves the "one vertex, shortest path" problem
 - basic algorithm concept: create a table of information about the currently known best way to reach each vertex (distance, previous vertex) and improve it until it reaches the best solution

- in a graph where:
 - vertices represent cities,
 - edge weights represent driving distances between pairs of cities connected by a direct road,

 Dijkstra's algorithm can be used to find the shortest route between one city and any other
Dijkstra pseudocode

\[\text{Dijkstra}(v_1, v_2): \]
\[\text{for each vertex } v: \quad \text{// Initialization} \]
\[\quad v's \text{ distance} := \text{infinity}. \]
\[\quad v's \text{ previous} := \text{none}. \]
\[\quad v_1's \text{ distance} := 0. \]
\[\quad \text{List} := \{\text{all vertices}\}. \]
\[\]
\[\text{while List is not empty:} \]
\[\quad v := \text{remove List vertex with minimum distance.} \]
\[\quad \text{mark } v \text{ as known.} \]
\[\quad \text{for each unknown neighbor } n \text{ of } v: \]
\[\quad \quad \text{dist} := v's \text{ distance} + \text{edge } (v, n)'s \text{ weight.} \]
\[\]
\[\quad \text{if dist is smaller than } n's \text{ distance:} \]
\[\quad \quad n's \text{ distance} := \text{dist.} \]
\[\quad \quad n's \text{ previous} := v. \]
\[\]
reconstruct path from v2 back to v1, following previous pointers.
Example: Initialization

Distance(source) = 0

Pick vertex in List with minimum distance.
Example: Update neighbors' distance

Distance(B) = 2
Distance(D) = 1
Example: Remove vertex with minimum distance

Pick vertex in List with minimum distance, i.e., D
Example: Update neighbors

Distance(C) = 1 + 2 = 3
Distance(E) = 1 + 2 = 3
Distance(F) = 1 + 8 = 9
Distance(G) = 1 + 4 = 5
Example: Continued...

Pick vertex in List with minimum distance (B) and update neighbors

Note: distance(D) not updated since D is already known and distance(E) not updated since it is larger than previously computed
Example: Continued...

Pick vertex List with minimum distance (E) and update neighbors
Example: Continued...

Pick vertex List with minimum distance (C) and update neighbors

Distance(F) = 3 + 5 = 8
Example: Continued...

Pick vertex List with minimum distance (G) and update neighbors

Distance(F) = min (8, 5+1) = 6
Example (end)

Pick vertex not in S with lowest cost (F) and update neighbors
Correctness

• Dijkstra’s algorithm is a greedy algorithm
 – make choices that currently seem the best
 – locally optimal does not always mean globally optimal

• Correct because maintains following two properties:
 – for every known vertex, recorded distance is shortest distance to that vertex from source vertex
 – for every unknown vertex v, its recorded distance is shortest path distance to v from source vertex, considering only currently known vertices and v
“Cloudy” Proof: The Idea

If the path to \(v \) is the next shortest path, the path to \(v' \) must be at least as long. Therefore, any path through \(v' \) to \(v \) cannot be shorter!
Dijkstra pseudocode

Dijkstra(v1, v2):
 for each vertex v: // Initialization
 v's distance := infinity.
 v's previous := none.
 v1's distance := 0.
 List := {all vertices}.

 while List is not empty:
 v := remove List vertex with minimum distance.
 mark v as known.
 for each unknown neighbor n of v:
 dist := v's distance + edge (v, n)'s weight.

 if dist is smaller than n's distance:
 n's distance := dist.
 n's previous := v.

 reconstruct path from v2 back to v1,
 following previous pointers.
The simplest implementation of the Dijkstra's algorithm stores vertices in an ordinary linked list or array
 – Good for dense graphs (many edges)

• $|V|$ vertices and $|E|$ edges
• Initialization $O(|V|)$
• While loop $O(|V|)$
 – Find and remove min distance vertices $O(|V|)$
 – Potentially $|E|$ updates
 • Update costs $O(1)$
• Reconstruct path $O(|E|)$

Total time $O(|V|^2 + |E|) = O(|V|^2)$
Time Complexity: Priority Queue

For sparse graphs, (i.e. graphs with much less than $|V|^2$ edges) Dijkstra's implemented more efficiently by priority queue

- Initialization $O(|V|)$ using $O(|V|)$ buildHeap
- While loop $O(|V|)$
 - Find and remove min distance vertices $O(\log |V|)$ using $O(\log |V|)$ deleteMin
 - Potentially $|E|$ updates
 - Update costs $O(\log |V|)$ using decreaseKey
- Reconstruct path $O(|E|)$

Total time $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$

$|V| = O(|E|)$ assuming a connected graph
Dijkstra's Exercise

• Use Dijkstra's algorithm to determine the lowest cost path from vertex A to all of the other vertices in the graph. Keep track of previous vertices so that you can reconstruct the path later.
Minimum spanning tree

• **tree**: a connected, directed acyclic graph

• **spanning tree**: a subgraph of a graph, which meets the constraints to be a tree (connected, acyclic) and connects every vertex of the original graph

• **minimum spanning tree**: a spanning tree with weight less than or equal to any other spanning tree for the given graph
Min. span. tree applications

• Consider a cable TV company laying cable to a new neighborhood...
 – If it is constrained to bury the cable only along certain paths, then there would be a graph representing which points are connected by those paths.
 – Some of those paths might be more expensive, because they are longer, or require the cable to be buried deeper.
 • These paths would be represented by edges with larger weights.
 – A spanning tree for that graph would be a subset of those paths that has no cycles but still connects to every house.
 • There might be several spanning trees possible. A minimum spanning tree would be one with the lowest total cost.