CSE 373: Data Structures and Algorithms

Lecture 18: Graphs II
Directed graphs

- **directed graph (digraph):** edges are one-way connections between vertices
Trees as Graphs

• Every tree is a graph with some restrictions:
 – the tree is directed
 – the tree is acyclic
 – there is exactly one directed path from the root to every node
More terminology

• **degree**: number of edges touching a vertex
 – example: W has degree 4
 – what is the degree of X? of Z?

• **adjacent** vertices: connected directly by an edge

• If graph is directed, a vertex has a separate *in/out degree*
Graph questions

• Are the following graphs directed or not directed?
 – Buddy graphs of instant messaging programs?
 (vertices = users, edges = user being on another's buddy list)
 – bus line graph depicting all of Seattle's bus stations and routes
 – graph of movies in which actors have appeared together

• Are these graphs potentially cyclic? Why or why not?
Graph exercise

• Consider a graph of instant messenger buddies.
 – What do the vertices represent? What does an edge represent?
 – Is this graph directed or undirected? Weighted or unweighted?
 – What does a vertex's degree mean? In degree? Out degree?
 – Can the graph contain loops? cycles?

• Consider this graph data:
 – Jessica's buddy list: Meghan, Alan, Martin.
 – Meghan's buddy list: Alan, Lori.
 – Toni's buddy list: Lori, Meghan.
 – Martin's buddy list: Lori, Meghan.
 – Alan's buddy list: Martin, Jessica.
 – Lori's buddy list: Meghan.
 – Compute the in/out degree of each vertex. Is the graph connected?
 – Who is the most popular? Least? Who is the most antisocial?
 – If we're having a party and want to distribute the message the most quickly, who should we tell first?
Problem: Find an order in which all these courses can be taken.

Example: 142 → 143 → 378 → 370 → 321 → 341 → 322 → 326 → 421 → 401

In order to take a course, you must take all of its prerequisites first.
Topological Sort

Given a digraph $G = (V, E)$, find a total ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering
Topo sort - good example

Any total ordering in which all the arrows go to the right is a valid solution.

Note that F can go anywhere in this list because it is not connected. Also the solution is not unique.
Any ordering in which an arrow goes to the left is not a valid solution
Only acyclic graphs can be topologically sorted

- A directed graph with a cycle cannot be topologically sorted.
Topological sort algorithm: 1

Step 1: Identify vertices that have no incoming edges
 • The “in-degree” of these vertices is zero

![Diagram of a directed graph with vertices A, B, C, D, E, and F, showing the direction of edges.]
Step 1: Identify vertices that have no incoming edges
- If no such vertices, graph has only cycle(s) (cyclic graph)
- Topological sort not possible – Halt.

Example of a cyclic graph
Step 1: Identify vertices that have no incoming edges
• Select one such vertex
Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.
Continue until done

Repeat Step 1 and Step 2 until graph is empty

Select

![Graph diagram]

- Repeat Step 1 and Step 2 until graph is empty.
Select B. Copy to sorted list. Delete B and its edges.
Select C. Copy to sorted list. Delete C and its edges.
Select D. Copy to sorted list. Delete D and its edges.
E, F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.
Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 (a) Dequeue and output a vertex
 (b) Reduce In-Degree of all vertices adjacent to it by 1
 (c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
Pseudocode

Queue Q := [Vertices with in-degree 0]
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x]; // y gets a linked list of vertices
 while y ≠ null do
 D[y.value] := D[y.value] - 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile
Topo Sort w/ queue

Queue (before):
Queue (after): 1, 6

Answer:
Topo Sort w/ queue

Queue (before): 1, 6
Queue (after): 6, 2

Answer: 1
Topo Sort w/ queue

Queue (before): 6, 2
Queue (after): 2

Answer: 1, 6
Topo Sort w/ queue

Queue (before): 2
Queue (after): 3

Answer: 1, 6, 2
Topo Sort w/ queue

Queue (before): 3
Queue (after): 4

Answer: 1, 6, 2, 3
Topo Sort w/ queue

Queue (before): 4
Queue (after): 5

Answer: 1, 6, 2, 3, 4
Topo Sort w/ queue

Queue (before): 5
Queue (after):

Answer: 1, 6, 2, 3, 4, 5
Topo Sort w/ stack

Stack (before):
Stack (after): 1, 6

Answer:
Topo Sort w/ stack

Stack (before): 1, 6
Stack (after): 1, 7, 8

Answer: 6
Topo Sort w/ stack

Stack (before): 1, 7, 8
Stack (after): 1, 7

Answer: 6, 8
Topo Sort w/ stack

Stack (before): 1, 7
Stack (after): 1

Answer: 6, 8, 7
Topo Sort w/ stack

Stack (before): 1
Stack (after): 2

Answer: 6, 8, 7, 1
Topo Sort w/ stack

Stack (before): 2
Stack (after): 3

Answer: 6, 8, 7, 1, 2
Topo Sort w/ stack

Stack (before): 3
Stack (after): 4

Answer: 6, 8, 7, 1, 2, 3
Topo Sort w/ stack

Stack (before): 4
Stack (after): 5

Answer: 6, 8, 7, 1, 2, 3, 4
Topo Sort w/ stack

Stack (before): 5
Stack (after):

Answer: 6, 8, 7, 1, 2, 3, 4, 5
TopoSort Fails (cycle)

Queue (before):
Queue (after): 1

Answer:
TopoSort Fails (cycle)

Queue (before): 1
Queue (after): 2

Answer: 1
TopoSort Fails (cycle)

Queue (before): 2
Queue (after):

Answer: 1, 2
What is the run-time???

Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x]; // y gets a linked list of vertices
 while y ≠ null do
 D[y.value] := D[y.value] - 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile
Topological Sort Analysis

• Initialize In-Degree array: \(O(|V| + |E|) \)
• Initialize Queue with In-Degree 0 vertices: \(O(|V|) \)
• Dequeue and output vertex:
 – \(|V|\) vertices, each takes only \(O(1) \) to dequeue and output: \(O(|V|) \)
• Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 – \(O(|E|) \)
• For input graph \(G=(V,E) \) run time = \(O(|V| + |E|) \)
 – Linear time!
Depth-first search

- **depth-first search (DFS):** finds a path between two vertices by exploring each possible path as many steps as possible before backtracking
 - often implemented recursively
DFS example

- All DFS paths from A to others (assumes ABC edge order)
 - A
 - A -> B
 - A -> B -> D
 - A -> B -> F
 - A -> B -> F -> E
 - A -> C
 - A -> C -> G

- What are the paths that DFS did not find?
DFS pseudocode

- Pseudo-code for depth-first search:

  ```
  dfs(v1, v2):
    dfs(v1, v2, {})
  dfs(v1, v2, path):
    path += v1.
    mark v1 as visited.
    if v1 is v2:
      path is found.
    for each unvisited neighbor vi of v1
      where there is an edge from v1 to vi:
        if dfs(vi, v2, path) finds a path, path is found.
    path -= v1. path is not found.
  ```
DFS observations

- guaranteed to find a path if one exists
- easy to retrieve exactly what the path is (to remember the sequence of edges taken) if we find it
- optimality: not optimal. DFS is guaranteed to find a path, not necessarily the best/shortest path
 - Example: DFS(A, E) may return A -> B -> F -> E
Another DFS example

• Using DFS, find a path from BOS to LAX.
Breadth-first search

- **breadth-first search (BFS):** finds a path between two nodes by taking one step down all paths and then immediately backtracking
 - often implemented by maintaining a list or queue of vertices to visit
 - BFS always returns the path with the fewest edges between the start and the goal vertices
BFS example

• All BFS paths from A to others (assumes ABC edge order)
 – A
 – A -> B
 – A -> C
 – A -> E
 – A -> B -> D
 – A -> B -> F
 – A -> C -> G

• What are the paths that BFS did not find?
BFS pseudocode

- Pseudo-code for breadth-first search:
 \(\text{bfs}(v1, v2):\)

 \[
 \begin{align*}
 \text{List} & \text{ := \{v1}.} \\
 \text{mark v1 as visited.} \\
 \\
 \text{while List not empty:} \\
 \text{v := List.removeFirst().} \\
 \text{if v is v2:} \\
 \text{\quad path is found.} \\
 \\
 \text{for each unvisited neighbor } v_i \text{ of v} \\
 \text{where there is an edge from v to } v_i: \\
 \text{\quad List.addLast(v_i).} \\
 \text{path is not found.}
 \end{align*}
 \]
BFS observations

• *optimality*:
 - in unweighted graphs, optimal. (fewest edges = best)
 - In weighted graphs, not optimal.
 (path with fewest edges might not have the lowest weight)

• *disadvantage*: harder to reconstruct what the actual path is once you find it
 - conceptually, BFS is exploring many possible paths in parallel, so it's not easy to store a Path array/list in progress

• observation: any particular vertex is only part of one partial path at a time
 - We can keep track of the path by storing *predecessors* for each vertex (references to the previous vertex in that path)
Another BFS example

- Using BFS, find a path from BOS to SFO.
DFS, BFS runtime

- What is the expected runtime of DFS, in terms of the number of vertices V and the number of edges E?

- What is the expected runtime of BFS, in terms of the number of vertices V and the number of edges E?

- Answer: $O(|V| + |E|)$
 - each algorithm must potentially visit every node and/or examine every edge once.
 - why not $O(|V| * |E|)$?

- What is the space complexity of each algorithm?