CSE 373: Data Structures and Algorithms

Lecture 17: Graphs
What are graphs?

• Yes, this is a graph....

• But we are interested in a different kind of “graph”
Airline Routes

Nodes = cities
Edges = direct flights
Computer Networks

Nodes = computers
Edges = transmission rates
Nodes = courses
Directed edge = prerequisite
Graphs

- **graph**: a data structure containing
 - a set of vertices V
 - a set of edges E, where an edge represents a connection between 2 vertices
 - $G = (V, E)$
 - edge is a pair (v, w) where v, w in V

- the graph at right: $V = \{a, b, c\}$ and $E = \{(a, b), (b, c), (c, a)\}$

- Assuming that a graph can only have one edge between a pair of vertices and cannot have an edge to itself, what is the maximum number of edges a graph can contain, relative to the size of the vertex set V?
• **path**: a path from vertex A to B is a sequence of edges that can be followed starting from A to reach B
 – can be represented as vertices visited or edges taken
 – example: path from V to Z: \{b, h\} or \{V, X, Z\}

• **reachability**: v_1 is *reachable* from v_2 if a path exists from V_1 to V_2

• **connected** graph: one in which it's possible to reach any node from any other
 – is this graph connected?
Cycles

• **cycle**: path from one node back to itself
 – example: \{b, g, f, c, a\} or \{V, X, Y, W, U, V\}

• **loop**: edge directly from node to itself
 – many graphs don't allow loops
Weighted graphs

- **weight**: (optional) cost associated with a given edge

- example: graph of airline flights
 - if we were programming this graph, what information would we have to store for each vertex / edge?
Directed graphs

- directed graph (digraph): edges are one-way connections between vertices
 - if graph is directed, a vertex has a separate in/out degree
Trees as Graphs

• Every tree is a graph with some restrictions:
 – the tree is directed
 – there is exactly one directed path from the root to every node
More terminology

• **degree**: number of edges touching a vertex
 – example: W has degree 4
 – what is the degree of X? of Z?

• **adjacent vertices**: connected directly by an edge
Graph questions

• Are the following graphs directed or not directed?
 – Buddy graphs of instant messaging programs? (vertices = users, edges = user being on another's buddy list)
 – bus line graph depicting all of Seattle's bus stations and routes
 – graph of movies in which actors have appeared together

• Are these graphs potentially cyclic? Why or why not?
Graph exercise

• Consider a graph of instant messenger buddies.
 – What do the vertices represent? What does an edge represent?
 – Is this graph directed or undirected? Weighted or unweighted?
 – What does a vertex's degree mean? In degree? Out degree?
 – Can the graph contain loops? cycles?

• Consider this graph data:
 – Jessica's buddy list: Meghan, Alan, Martin.
 – Meghan's buddy list: Alan, Lori.
 – Toni's buddy list: Lori, Meghan.
 – Martin's buddy list: Lori, Meghan.
 – Alan's buddy list: Martin, Jessica.
 – Lori's buddy list: Meghan.

 – Compute the in/out degree of each vertex. Is the graph connected?
 – Who is the most popular? Least? Who is the most antisocial?
 – If we're having a party and want to distribute the message the most quickly, who should we tell first?