Set implementation: insert

• Similar structure to contains
 – Calculate hash of new element
 – Check if the element is already in the set

• Add the element to the front of the list that is at table[hash(value)]
```java
public boolean add(String value) {
    int valuePosition = hash(value);

    // check to see if the value is already in the set
    StringHashEntry temp = table[valuePosition];
    while (temp != null) {
        if (temp.data.equals(value)) {
            return false;
        }
        temp = temp.next;
    }

    // add the value to the set
    StringHashEntry newEntry = new StringHashEntry(value, table[valuePosition]);
    table[valuePosition] = newEntry;
    size++;
    return true;
}
```
public boolean remove(String value) {
 int valuePosition = hash(value);
 if (table[valuePosition] == null) { // empty bucket
 return false;
 }
 if (table[valuePosition].data.equals(value)) { // removing front
 table[valuePosition] = table[valuePosition].next;
 size--; return true;
 }
 StringHashEntry temp = table[valuePosition];
 while (temp.next != null) { // find value
 if (temp.next.data.equals(value)) {
 temp.next = temp.next.next;
 size--; return true;
 }
 temp = temp.next;
 }
 return false;
}
Hash versus tree

- Which is better, a hash set or a tree set?

<table>
<thead>
<tr>
<th>Hash</th>
<th>Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Implementing Set ADT (Revisited)

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th>Remove</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$\Theta(\log(n) + n)$</td>
<td>$\Theta(\log(n) + n)$</td>
<td>$\Theta(\log(n))$</td>
</tr>
<tr>
<td>Linked list</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>BST (if balanced)</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Hash table</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Probing hash tables

• Alternative strategy for collision resolution: try alternative cells until empty cell found
 – cells $h_0(x), h_1(x), h_2(x), \ldots$ tried in succession,
 where $h_i(x) = (\text{hash}(x) + f(i)) \% \text{TableSize}$
 – f is collision resolution strategy
 – bigger table needed
Linear probing

• **linear probing**: resolving collisions in slot \(i \) by putting the colliding element into the next available slot \((i+1, i+2, \ldots)\)

 – add 41, 34, 7, 18, then 21, then 57
 • 21 collides (41 is already there), so we search ahead until we find empty slot 2
 • 57 collides (7 is already there), so we search ahead twice until we find empty slot 9

 – lookup algorithm becomes slightly modified; we have to loop now until we find the element or an empty slot
 • what happens when the table gets mostly full?
Linear probing

• $f(i) = i$

• Probe sequence:

 0^{th} probe = $h(x) \mod TableSize$

 1^{th} probe = $(h(x) + 1) \mod TableSize$

 2^{th} probe = $(h(x) + 2) \mod TableSize$

 \ldots

 i^{th} probe = $(h(x) + i) \mod TableSize$
Primary clustering problem

- **clustering**: nodes being placed close together by probing, which degrades hash table's performance
 - add 89, 18, 49, 58, 9
 - now searching for the value 28 will have to check half the hash table! no longer constant time...
Linear probing – clustering

- No collision
- Collision in small cluster
- Collision in large cluster
Alternative probing strategy

• Primary clustering occurs with linear probing because the same linear pattern:
 – if a slot is inside a cluster, then the next slot must either:
 • also be in that cluster, or
 • expand the cluster

• Instead of searching forward in a linear fashion, consider searching forward using a quadratic function
Quadratic probing

- **quadratic probing**: resolving collisions on slot i by putting the colliding element into slot $i+1$, $i+4$, $i+9$, $i+16$, ...
 - add 89, 18, 49, 58, 9
 - 49 collides (89 is already there), so we search ahead by +1 to empty slot 0
 - 58 collides (18 is already there), so we search ahead by +1 to occupied slot 9, then +4 to empty slot 2
 - 9 collides (89 is already there), so we search ahead by +1 to occupied slot 0, then +4 to empty slot 3
 - what is the lookup algorithm?
Quadratic probing in action

\[
\begin{align*}
\text{hash (89, 10)} &= 9 \\
\text{hash (18, 10)} &= 8 \\
\text{hash (49, 10)} &= 9 \\
\text{hash (58, 10)} &= 8 \\
\text{hash (9, 10)} &= 9
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>After insert 89</th>
<th>After insert 18</th>
<th>After insert 49</th>
<th>After insert 58</th>
<th>After insert 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
</tbody>
</table>
Quadratic probing

• $f(i) = i^2$

• Probe sequence:

 0th probe = $h(x) \mod TableSize$

 1st probe = (h(x) + 1) \mod TableSize

 2nd probe = (h(x) + 4) \mod TableSize

 3rd probe = (h(x) + 9) \mod TableSize

 \ldots

 ith probe = $(h(x) + i^2) \mod TableSize
Quadratic probing benefit

• If one of $h + i^2$ falls into a cluster, this does not imply the next one will

• For example, suppose an element was to be inserted in bucket 23 in a hash table with 31 buckets
 – The sequence in which the buckets would be checked is:
 23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0
Quadratic probing benefit

• Even if two buckets are initially close, the sequence in which subsequent buckets are checked varies greatly
 – Again, with TableSize = 31, compare the first 16 buckets which are checked starting with elements 22 and 23:

 22 22, 23, 26, 0, 7, 16, 27, 9, 24, 10, 29, 19, 11, 5, 1, 30
 23 23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0

• Quadratic probing solves the problem of primary clustering
Quadratic probing drawbacks

- Suppose we have 8 buckets:
 \[1^2 \mod 8 = 1, \ 2^2 \mod 8 = 4, \ 3^2 \mod 8 = 1 \]
 - In this case, we are checking bucket \(h(x) + 1 \) twice having checked only one other bucket

- No guarantee that
 \[(h(x) + i^2) \mod TableSize \]
 will cycle through 0, 1, ..., \(TableSize - 1 \)
Quadratic probing

• Solution:
 – require that $TableSize$ be prime
 – $(h(x) + i^2) \mod TableSize$ for $i = 0, ..., (TableSize - 1)/2$ will cycle through $(TableSize + 1)/2$ values before repeating

• Example with $M = 11$:
 $0, 1, 4, 9, 16 \equiv 5, 25 \equiv 3, 36 \equiv 3$

• With $M = 13$:
 $0, 1, 4, 9, 16 \equiv 3, 25 \equiv 12, 36 \equiv 10, 49 \equiv 10$

• With $M = 17$:
 $0, 1, 4, 9, 16, 25 \equiv 8, 36 \equiv 2, 49 \equiv 15, 64 \equiv 13, 81 \equiv 13$

Note: the symbol \equiv means "$\mod M =$"
Double hashing

- **double hashing**: resolve collisions on slot \(i \) by applying a second hash function

- \(f(i) = i \times g(x) \)
 where \(g \) is a second hash function
 - limitations on what \(g \) can evaluate to?
 - recommended: \(g(x) = R - (x \mod R) \), where \(R \) prime smaller than \(TableSize \)

- Probe sequence:
 - 0\(^{th} \) probe = \(h(x) \mod TableSize \)
 - 1\(^{th} \) probe = \((h(x) + g(x)) \mod TableSize \)
 - 2\(^{th} \) probe = \((h(x) + 2 \times g(x)) \mod TableSize \)
 - 3\(^{th} \) probe = \((h(x) + 3 \times g(x)) \mod TableSize \)
 - \(\ldots \)
 - \(i^{th} \) probe = \((h(x) + i \times g(x)) \mod TableSize \)
Double Hashing Example

\[h(x) = x \mod 7 \text{ and } g(x) = 5 - (x \mod 5) \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41</td>
<td>16</td>
<td>40</td>
<td>47</td>
<td>10</td>
<td>55</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>16</td>
<td></td>
<td>47</td>
<td>16</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>2</td>
</tr>
</tbody>
</table>

Probes 1