CSE 373: Data Structures and Algorithms

Lecture 11: Priority Queues (Heaps)
Motivating examples

• **Bandwidth management:** A router is connected to a line with limited bandwidth. If there is insufficient bandwidth, the router maintains a queue for incoming data such that the most important data will get forwarded first as bandwidth becomes available.

• **Printing:** A shared server has a list of print jobs to print. It wants to print them in chronological order, but each print job also has a *priority*, and higher-priority jobs always print before lower-priority jobs.

• **Algorithms:** We are writing a ghost AI algorithm for Pac-Man. It needs to search for the best path to find Pac-Man; it will enqueue all possible paths with priorities (based on guesses about which one will succeed), and try them in order.
Priority Queue ADT

- **priority queue**: A collection of elements that provides fast access to the minimum (or maximum) element
 - a mix between a queue and a BST

- **basic priority queue operations**:
 - **insert**: Add an element to the priority queue (priority matters)
 - **remove (i.e. deleteMin)**: Removes/returns minimum element
Using PriorityQueue

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PriorityQueue<E>()</td>
<td>constructs a PriorityQueue that orders the elements according to their compareTo (element type must implement Comparable)</td>
</tr>
<tr>
<td>add(element)</td>
<td>inserts the element into the PriorityQueue</td>
</tr>
<tr>
<td>remove()</td>
<td>removes and returns the element at the head of the queue</td>
</tr>
<tr>
<td>peek()</td>
<td>returns, but does not remove, the element at the head of the queue</td>
</tr>
</tbody>
</table>

Queue<String> pq = new PriorityQueue<String>();
pq.add("Kona");
pq.add("Daisy");

— implements Queue interface
Potential Implementations

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted list (Array)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsorted list (Linked-List)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted list (Array)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted list (Linked-List)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVL Trees</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Potential Implementations

<table>
<thead>
<tr>
<th>Implementation</th>
<th>insert</th>
<th>deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted list (Array)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted list (Linked-List)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted list (Array)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)^*$</td>
</tr>
<tr>
<td>Sorted list (Linked-List)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$ worst</td>
<td>$\Theta(n)$ worst</td>
</tr>
<tr>
<td>AVL Trees</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
Heap properties

• **heap**: a tree with the following two properties:

 – 1. completeness

 complete tree: every level is full except possibly the lowest level, which must be filled from left to right with no leaves to the right of a missing node (i.e., a node may not have any children until all of its possible siblings exist)

Heap shape:
Heap properties 2

2. *heap ordering*

A tree has *heap ordering* if $P \leq X$ for every element X with parent P.

- In other words, in heaps, parents' element values are always smaller than those of their children.
- Implies that minimum element is always the root.
- Is every a heap a BST? Are any heaps BSTs?
Which are min-heaps?
Which are max-heaps?

wrong!

wrong!

wrong!
Heap height and runtime

• height of a complete tree is always log n, because it is always balanced
 – because of this, if we implement a priority queue using a heap, we can provide the O(log n) runtime required for the \textbf{add and remove operations}

n-node complete tree of height h:
$2^h \leq n \leq 2^{h+1} - 1$
$h = \lfloor \log n \rfloor$
Implementation of a heap

• when implementing a complete binary tree, we actually can "cheat" and just use an array
 – index of root = 1 (leave 0 empty for simplicity)
 – for any node n at index i,
 • index of n.left = $2i$
 • index of n.right = $2i + 1$
 – parent index?
Implementing Priority Queue with Binary Heap

public interface IntPriorityQueue {
 public void add(int value);
 public boolean isEmpty();
 public int peek();
 public int remove();
}

public class IntBinaryHeap implements IntPriorityQueue {
 private static final int DEFAULT_CAPACITY = 10;
 private int[] array;
 private int size;

 public IntBinaryHeap () {
 array = new int[DEFAULT_CAPACITY];
 size = 0;
 }
 ...
}
Adding to a heap

• when an element is added to a heap, it should be initially placed as the rightmost leaf (to maintain the completeness property)
 – heap ordering property becomes broken!
Adding to a heap, cont'd.

• to restore heap ordering property, the newly added element must be shifted upward ("bubbled up") until it reaches its proper place
 – bubble up (book: "percolate up") by swapping with parent
 – how many bubble-ups could be necessary, at most?

```
  10
  /   \
 20   80
 /     /
40     60
 /     /  \
50   700 65
```

```
  10
  /   \
 15   80
 /     /
40     20
 /     /  \
50   700 65
```

Adding to a max-heap

- same operations, but must bubble up *larger* values to top
Heap practice problem

• Draw the state of the min-heap tree after adding the following elements to it:

6, 50, 11, 25, 42, 20, 104, 76, 19, 55, 88, 2
public void add(int value) {
 // grow array if needed
 if (size >= array.length - 1) {
 array = this.resize();
 }

 // place element into heap at bottom
 size++;
 int index = size;
 array[index] = value;

 bubbleUp();
}
private void bubbleUp() {
 int index = this.size;

 while (hasParent(index)
 && (parent(index) > array[index])) {
 // parent/child are out of order; swap them
 swap(index, parentIndex(index));
 index = parentIndex(index);
 }
}

// helpers
private boolean hasParent(int i) { return i > 1; }
private int parentIndex(int i) { return i/2; }
priavt int parent(int i) { return array[parentIndex(i)]; }
The peek operation

- peek on a min-heap is trivial; because of the heap properties, the minimum element is always the root
 - peek is O(1)
 - peek on a max-heap would be O(1) as well, but would return you the maximum element and not the minimum one
public int peek() {
 if (this.isEmpty()) {
 throw new IllegalStateException();
 }

 return array[1];
}