CSE 373: Data Structures and Algorithms

Lecture 7: Sorting II
Sorting Classification

<table>
<thead>
<tr>
<th>In memory sorting</th>
<th>External sorting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison sorting</td>
<td></td>
</tr>
<tr>
<td>(\Omega(N \log N))</td>
<td></td>
</tr>
<tr>
<td>Specialized Sorting</td>
<td></td>
</tr>
<tr>
<td>(O(N^2))</td>
<td>(O(N \log N))</td>
</tr>
<tr>
<td>Bullet Bubble Sort</td>
<td>Bullet Merge Sort</td>
</tr>
<tr>
<td>Bullet Selection Sort</td>
<td>Bullet Quick Sort</td>
</tr>
<tr>
<td>Bullet Insertion Sort</td>
<td>Bullet Heap Sort</td>
</tr>
</tbody>
</table>

in place? stable?
O(n \log n) Comparison Sorting (continued)
Merge sort example 2

<table>
<thead>
<tr>
<th>13</th>
<th>6</th>
<th>21</th>
<th>18</th>
<th>9</th>
<th>4</th>
<th>8</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>21</td>
<td>18</td>
<td></td>
<td>9</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>21</td>
<td>18</td>
<td></td>
<td>9</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>18</td>
<td>21</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>18</td>
<td>21</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>13</th>
<th>18</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Merge sort example 2
Quick sort

• **quick sort**: orders a list of values by partitioning the list around one element called a *pivot*, then sorting each partition
 – invented by British computer scientist C.A.R. Hoare in 1960

• more specifically:
 – choose one element in the list to be the pivot (partition element)
 – organize the elements so that all elements less than the pivot are to its left and all greater are to its right
 – apply the quick sort algorithm (recursively) to both partitions
Quick sort, continued

• For correctness, it's okay to choose any pivot.

• For efficiency, one of following is best case, the other worst case:
 – pivot partitions the list roughly in half
 – pivot is greatest or least element in list

• Which case above is best?

• We will divide the work into two methods:
 – quickSort – performs the recursive algorithm
 – partition – rearranges the elements into two partitions
Quick sort pseudo-code

• Let \(S \) be the input set.

1. If \(|S| = 0\) or \(|S| = 1\), then return.

2. Pick an element \(v \) in \(S \). Call \(v \) the pivot.

3. Partition \(S - \{v\} \) into two disjoint groups:
 • \(S_1 = \{x \in S - \{v\} \mid x \leq v\} \)
 • \(S_2 = \{x \in S - \{v\} \mid x \geq v\} \)

4. Return \{ quicksort\((S_1) \), \(v \), quicksort\((S_2) \) \}
Quick sort illustrated

pick a pivot

partition

quicksort

combine
How to choose a pivot

• first element
 – bad if input is sorted or in reverse sorted order
 – bad if input is nearly sorted
 – variation: particular element (e.g. middle element)

• random element
 – even a malicious agent cannot arrange a bad input

• median of three elements
 – choose the median of the left, right, and center elements
Partitioning algorithm

The basic idea:

1. Move the **pivot** to the **rightmost** position.

2. Starting from the left, find an element \(\geq \) **pivot**. Call the position \(i \).

3. Starting from the right, find an element \(\leq \) **pivot**. Call the position \(j \).

4. Swap \(S[i] \) and \(S[j] \).
Partitioning example

<table>
<thead>
<tr>
<th>8</th>
<th>1</th>
<th>4</th>
<th>9</th>
<th>0</th>
<th>3</th>
<th>5</th>
<th>2</th>
<th>7</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
public static void quickSort(int[] a) {
 quickSort(a, 0, a.length - 1);
}

private static void quickSort(int[] a, int min, int max) {
 if (min >= max) { // base case; no need to sort
 return;
 }

 // choose pivot -- we'll use the first element (might be bad!)
 int pivot = a[min];
 swap(a, min, max); // move pivot to end

 // partition the two sides of the array
 int middle = partition(a, min, max - 1, pivot);

 // restore the pivot to its proper location
 swap(a, middle, max);

 // recursively sort the left and right partitions
 quickSort(a, min, middle - 1);
 quickSort(a, middle + 1, max);
}
Quick sort code, cont'd.

```java
// partitions a with elements < pivot on left and
// elements > pivot on right;
// returns index of element that should be swapped with pivot
private static int partition(int[] a, int i, int j, int pivot) {
    i--; j++; // kludge because the loops pre-increment
    while (true) {
        // move index markers i,j toward center
        // until we find a pair of mis-partitioned elements
        do { i++; } while (i < j && a[i] < pivot);
        do { j--; } while (i < j && a[j] > pivot);

        if (i >= j) {
            break;
        } else {
            swap(a, i, j);
        }
    }

    return i;
}
```
Quick sort code, cont'd.

// partitions a with elements < pivot on left and
// elements > pivot on right;
// returns index of element that should be swapped with pivot
private static int partition(int[] a, int i, int j, int pivot) {
 i--; j++; // kludge because the loops pre-increment
 while (true) {
 do { i++; } while (i < j && a[i] < pivot);
 do { j--; } while (i < j && a[j] > pivot);
 if (i >= j) {
 break;
 } else {
 swap(a, i, j);
 }
 }
 return i;
}
Quick sort code, cont'd.

```java
// partitions a with elements < pivot on left and
// elements > pivot on right;
// returns index of element that should be swapped with pivot
private static int partition(int[] a, int i, int j, int pivot) {
    i--; j++;  // kludge because the loops pre-increment
    while (true) {
        // move index markers i,j toward center
        // until we find a pair of mis-partitioned elements
        do { i++; } while (i < j && a[i] < pivot);
        do { j--; } while (i < j && a[j] > pivot);

        if (i < j) {
            swap(a, i, j);
        } else {
            break;
        }
    }

    return i;
}
```
Quick sort code, cont'd.

// partitions a with elements < pivot on left and
// elements > pivot on right;
// returns index of element that should be swapped with pivot
private static int partition(int[] a, int i, int j, int pivot) {
 i--; j++; // kludge because the loops pre-increment
 while (true) {
 // move index markers i, j toward center
 // until we find a pair of mis-partitioned elements
 do { i++; } while (i < j && a[i] < pivot);
 do { j--; } while (i < j && a[j] > pivot);

 if (i < j) {
 swap(a, i, j);
 } else { // avoid else if
 break;
 }
 }

 return i;
}
"Median of three" pivot

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>17</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>i</td>
<td></td>
<td></td>
<td>j</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>21</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>i</td>
<td></td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>17</td>
<td>21</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>17</td>
<td>21</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>j</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>17</td>
<td>21</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>j</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Special cases

• What happens when the array contains many duplicate elements?

• What happens when the array is already sorted (or nearly sorted) to begin with?

• Small arrays
 – Quicksort is slower than insertion sort when is N is small (say, N ≤ 20).
 – *Optimization:* Make |A| ≤ 20 the base case and use insertion sort algorithm on arrays of that size or smaller.
Quick sort runtime

• Worst case: pivot is the smallest (or largest) element all the time (recurrence solution technique: telescoping)
 \[T(n) = T(n-1) + cn \]
 \[T(n-1) = T(n-2) + c(n-1) \]
 \[T(n-2) = T(n-3) + c(n-2) \]
 ...
 \[T(2) = T(1) + 2c \]

 \[T(N) = T(1) + c \sum_{i=2}^{N} i = O(N^2) \]

• Best case: pivot is the median (recurrence solution technique: Master's Theorem)
 \[T(n) = 2 \ T(n/2) + cn \]
 \[T(n) = cn \log n + n = O(n \log n) \]
Quick sort runtime, cont'd.

• Assume each of the sizes for S_1 are equally likely. $0 \leq |S_1| \leq N-1.$

\[
T(N) = \left(\frac{1}{N} \sum_{i=0}^{N-1} [T(i) + T(N-i-1)] \right) + cN
\]

\[
= \left(\frac{2}{N} \sum_{i=0}^{N-1} T(i) \right) + cN
\]

\[
N \cdot T(N) = \left(2 \sum_{i=0}^{N-1} T(i) \right) + cN^2
\]

\[
(N - 1) \cdot T(N - 1) = 2 \sum_{i=0}^{N-2} T(i) + c(N - 1)^2
\]
Quick sort runtime, cont'd.

\[N \, T(N) = (N + 1) \, T(N - 1) + 2cN \]

\[\frac{T(N)}{N + 1} = \frac{T(N - 1)}{N} + \frac{2c}{N + 1} \]

\[\frac{T(N - 1)}{N} = \frac{T(N - 2)}{N - 1} + \frac{2c}{N} \]

\[\frac{T(N - 2)}{N - 1} = \frac{T(N - 3)}{N - 2} + \frac{2c}{N - 1} \]

\[\ldots \]

\[\frac{T(2)}{3} = \frac{T(1)}{2} + \frac{2c}{3} \]

\[T(N) = \frac{T(1)}{2} + 2c \sum_{i=3}^{N+1} \frac{1}{i} \]

\[T(N) = O(N \log N) \]

\[\approx \log_e (N+1) - 3/2 \]
Quick sort runtime summary

• $O(n \log n)$ on average.
• $O(n^2)$ worst case.

<table>
<thead>
<tr>
<th></th>
<th>comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>merge</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>
| quick | average: $O(n \log n)$
 worst: $O(n^2)$ |
Sorting practice problem

• Consider the following array of int values.

\[[22, 11, 34, -5, 3, 40, 9, 16, 6] \]

(f) Write the contents of the array after all the partitioning of quick sort has finished (before any recursive calls).

Assume that the median of three elements (first, middle, and last) is chosen as the pivot.
Sorting practice problem

• Consider the following array:
 \[7, 17, 22, -1, 9, 6, 11, 35, -3 \]
• Each of the following is a view of a sort-in-progress on the elements. Which sort is which?
 – (If the algorithm is a multiple-loop algorithm, the array is shown after a few of these loops have completed. If the algorithm is recursive, the array is shown after the recursive calls have finished on each sub-part of the array.)
 – Assume that the quick sort algorithm chooses the first element as its pivot at each pass.
 (a) \([-3, -1, 6, 17, 9, 22, 11, 35, 7]\)
 (b) \([-1, 7, 17, 22, -3, 6, 9, 11, 35]\)
 (c) \([9, 22, 17, -1, -3, 7, 6, 35, 11]\)
 (d) \([-1, 7, 6, 9, 11, -3, 17, 22, 35]\)
 (e) \([-3, 6, -1, 7, 9, 17, 11, 35, 22]\)
 (f) \([-1, 7, 17, 22, 9, 6, 11, 35, -3]\)
Sorting practice problem

• For the following questions, indicate which of the six sorting algorithms will successfully sort the elements in the least amount of time.
 – The algorithm chosen should be the one that completes fastest, without crashing.
 – Assume that the quick sort algorithm chooses the first element as its pivot at each pass.
 – Assume stack overflow occurs on 5000+ stacked method calls.
 – (a) array size 2000, random order
 – (b) array size 500000, ascending order
 – (c) array size 100000, descending order
 • special constraint: no extra memory may be allocated! (O(1) storage)
 – (d) array size 1000000, random order
 – (e) array size 10000, ascending order
 • special constraint: no extra memory may be allocated! (O(1) storage)
Lower Bound for Comparison Sorting

• Theorem: Any algorithm that sorts using only comparisons between elements requires \(\Omega(n \log n) \) comparisons.

 – Intuition
 • n! permutations that a sorting algorithm can output
 • each new comparison between any elements a and b cuts down the number of possible valid orderings by at most a factor of 2 (either all orderings where \(a > b \) or orderings where \(b > a \))
 • to know which output to produce, the algorithm must make at least \(\log_2(n!) \) comparisons before
 • \(\log_2(n!) = \Omega(n \log n) \)
O(n) Specialized Sorting
Bucket sort

• The bucket sort makes assumptions about the data being sorted
• Consequently, we can achieve better than $\Theta(n \log n)$ run times
Bucket Sort: Supporting Example

• Suppose we are sorting a large number of local phone numbers, for example, all residential phone numbers in the 206 area code region (over two million)

• Consider the following scheme:
 – create an array with 10 000 000 bits (i.e. BitSet)
 – set each bit to 0 (indicating false)
 – for each phone number, set the bit indexed by the phone number to 1 (true)
 – once each phone number has been checked, walk through the array and for each bit which is 1, record that number
Bucket Sort: Supporting Example

• In this example, the number of phone numbers (2 000 000) is comparable to the size of the array (10 000 000)
• The run time of such an algorithm is $O(n)$:
 – we make one pass through the data,
 – we make one pass through the array and extract the phone numbers which are true
Bucket Sort

- This approach uses very little memory and allows the entire structure to be kept in main memory at all times
- We will term each entry in the bit array a bucket
- We fill each bucket as appropriate
Example

• Consider sorting the following set of unique integers in the range 0, ..., 31:
 20 1 31 8 29 28 11 14 6 16 15
 27 10 4 23 7 19 18 0 26 12 22
• Create an bit array with 32 buckets
• This requires 4 bytes
Example

• For each number, set the bit of the corresponding bucket to 1
• Now, just traverse the list and record only those numbers for which the bit is 1 (true):

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>22</td>
<td>23</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
</tbody>
</table>
Bucket Sort

• How is this so fast?
• An algorithm which can sort arbitrary data must be \(\Omega(n \log n) \)
• In this case, we don’t have arbitrary data: we have one further constraint, that the items being sorted fall within a certain range
• Using this assumption, we can reduce the runtime
Bucket Sort

• Modification: what if there are repetitions in the data
• In this case, a bit array is insufficient
• Two options, each bucket is either:
 – a counter, or
 – a linked list
• The first is better if objects in the bin are the same
Example

• Sort the digits

0 3 2 8 5 3 7 5 3 2 8 2 3 5 1 3 2 8 5 3 4 9 2 3 5 1 0 9 3 5 2 3 5 4 2 1 3

• We start with an array of 10 counters, each initially set to zero:
Example

• Moving through the first 10 digits

0 3 2 8 5 3 7 5 3 2 8 2 3 5 1 3 2 8 5 3 4 9 2 3 5 1 0 9 3 5 2 3 5 4 2 1 3

we increment the corresponding buckets
Example

• Moving through remaining digits

0 3 2 8 5 3 7 5 3 2 8 2 3 5 1 3 2 8 5 3 4 9 2 3 5 1 0 9 3 5 2 3 5 4 2 1 3

we continue incrementing the corresponding buckets
Example

• We now simply read off the number of each occurrence:

```
0 0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 5 5 5 5 5 5 5 7 8 8 8 9 9
```

• For example:
 – there are seven 2s
 – there are two 4s
Run-time Summary

- The following table summarizes the run-times of bucket sort

<table>
<thead>
<tr>
<th>Case</th>
<th>Run Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst</td>
<td>$\Theta(n + m)$</td>
<td>No worst case</td>
</tr>
<tr>
<td>Average</td>
<td>$\Theta(n + m)$</td>
<td></td>
</tr>
<tr>
<td>Best</td>
<td>$\Theta(n + m)$</td>
<td>No best case</td>
</tr>
</tbody>
</table>
External Sorting
Simple External Merge Sort

- Divide and conquer: divide the file into smaller, sorted subfiles (called runs) and merge runs

- Initialize:
 - Load chunk of data from file into RAM
 - Sort internally
 - Write sorted data (run) back to disk (in separate files)

- While we still have runs to sort:
 - Merge runs from previous pass into runs of twice the size (think merge() method from mergesort)
 - Repeat until you only have one run