CSE 373: Data Structures and Algorithms

Lecture 4: Math Review/Asymptotic Analysis II
Functions in Algorithm Analysis

• $f(n) : \{0, 1, \ldots \} \rightarrow \mathbb{R}^+$
 – domain of f is the nonnegative integers
 – range of f is the nonnegative reals

• Unless otherwise indicated, the symbols f, g, h, and T refer to functions with this domain and range.

• We use many functions with other domains and ranges.
 – Example: $f(n) = 5 \ n \ \log_2 \ (n/3)$
 • Although the domain of f is nonnegative integers, the domain of \log_2 is all positive reals.
Efficiency examples 5

```plaintext
sum = 0;
for (int i = 1; i <= N; i *= c) {
    sum++;
}
```

\[\log_c N \]
\[\log_c N + 1 \]
Math background: Logarithms

• Logarithms
 – *definition*: $X^A = B$ if and only if $\log_x B = A$
 – *intuition*: $\log_x B$ means:
 "the power X must be raised to, to get B"

 – In this course, a logarithm with no base implies base 2.
 $\log B$ means $\log_2 B$

• Examples
 – $\log_2 16 = 4$ (because $2^4 = 16$)
 – $\log_{10} 1000 = 3$ (because $10^3 = 1000$)
Logarithm identities

Identities for logs with addition, multiplication, powers:

• \(\log (AB) = \log A + \log B \)
• \(\log (A/B) = \log A – \log B \)
• \(\log (A^B) = B \log A \)

Identity for converting bases of a logarithm:

• \[\log_A B = \frac{\log_C B}{\log_C A} \quad A, B, C > 0, A \neq 1 \]

 – example:
 \[\log_4 32 = (\log_2 32) / (\log_2 4) \]
 \[= 5 / 2 \]
Techniques: Logarithm problem solving

• When presented with an expression of the form:
 – \(\log_a X = Y \)
and trying to solve for \(X \), raise both sides to the \(a \) power.
 – \(X = a^Y \)

• When presented with an expression of the form:
 – \(\log_a X = \log_b Y \)
and trying to solve for \(X \), find a common base between the logarithms using the identity on the last slide.
 – \(\log_a X = \log_a Y / \log_a b \)
Logarithm practice problems

• Determine the value of x in the following equation.
 $\log_7 x + \log_7 13 = 3$

• Determine the value of x in the following equation.
 $\log_8 4 - \log_8 x = \log_8 5 + \log_{16} 6$
Prove identity for converting bases

Prove $\log_a b = \frac{\log_c b}{\log_c a}$.
A log is a log...

• We will assume all logs are to base 2

• Fine for Big Oh analysis because the log to one base is equivalent to the log of another base within a constant factor
 – E.g., $\log_{10} x$ is equivalent to $\log_2 x$ within what constant factor?
int sum = 0;
for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= i / 2; j += 2) {
 sum++;
 }
}

Efficiency examples 6
Math background: Arithmetic series

• Series

\[
\sum_{i=j}^{k} Expr
\]

– for some expression \(Expr \) (possibly containing \(i \)), means the sum of all values of \(Expr \) with each value of \(i \) between \(j \) and \(k \) inclusive

Example:

\[
\sum_{i=0}^{4} (2i + 1)
\]

= \((2(0) + 1) + (2(1) + 1) + (2(2) + 1) + (2(3) + 1) + (2(4) + 1)\)

= \(1 + 3 + 5 + 7 + 9\)

= \(25\)
Series identities

• sum from 1 through N inclusive

\[\sum_{i=1}^{N} i = \frac{N(N+1)}{2} \]

• is there an intuition for this identity?
 – sum of all numbers from 1 to N

 \[1 + 2 + 3 + \ldots + (N-2) + (N-1) + N \]

 – how many terms are in this sum? Can we rearrange them?
More series identities

• sum from a through N inclusive (when the series doesn't start at 1)

$$\sum_{i=a}^{N} i = \sum_{i=1}^{N} i - \sum_{i=1}^{a-1} i$$

• is there an intuition for this identity?
Series of constants

- sum of constants
 (when the body of the series doesn't contain the counter variable such as i)

$$\sum_{i=a}^{b} k = k \sum_{i=a}^{b} 1 = k(b - a + 1)$$

- example:

$$\sum_{i=4}^{10} 5 = 5 \sum_{i=4}^{10} 1 = 5(10 - 4 + 1) = 35$$
Splitting series

for any constant k,

- splitting a sum with addition

$$\sum_{i=a}^{b} (i + k) = \sum_{i=a}^{b} i + \sum_{i=a}^{b} k$$

- moving out a constant multiple

$$\sum_{i=a}^{b} ki = k \sum_{i=a}^{b} i$$
Series of powers

• sum of powers of 2

\[\sum_{i=0}^{N} 2^i = 2^{N+1} - 1 \]

\[- 1 + 2 + 4 + 8 + 16 + 32 = 64 - 1 = 63 \]

– think about binary representation of numbers...

\[111111 \quad (63) \]

\[+ 1 \quad (1) \]

\[1000000 \quad (64) \]

• when the series doesn't start at 0:

\[\sum_{i=a}^{N} 2^i = \sum_{i=0}^{N} 2^i - \sum_{i=0}^{a-1} 2^i \]
Series practice problems

• Give a closed form expression for the following summation.
 – A closed form expression is one without the Σ or "...".
 \[
 \sum_{i=0}^{N-2} 2i
 \]

• Give a closed form expression for the following summation.
 \[
 \sum_{i=10}^{N-1} (i - 5)
 \]
Efficiency examples 6 (revisited)

```c
int sum = 0;
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i / 2; j += 2) {
        sum++;
    }
}
```

- Compute the value of the variable sum after the following code fragment, as a closed-form expression in terms of input size n.
 - Ignore small errors caused by i not being evenly divisible by 2 and 4.
Big omega, theta

• **big-Oh Defn:** $T(N) = O(g(N))$ if there exist positive constants c, n_0 such that: $T(N) \leq c \cdot g(N)$ for all $N \geq n_0$

• **big-Omega Defn:** $T(N) = \Omega(g(N))$ if there are positive constants c and n_0 such that $T(N) \geq c \cdot g(N)$ for all $N \geq n_0$
 — Lingo: "T(N) grows no slower than g(N)."

• **big-Theta Defn:** $T(N) = \Theta(g(N))$ if and only if $T(N) = O(g(N))$ and $T(N) = \Omega(g(N))$.
 — Big-Oh, Omega, and Theta establish a *relative ordering* among all functions of N

• **little-oh Defn:** $T(N) = o(g(N))$ if and only if $T(N) = O(g(N))$ and $T(N) \neq \Omega(g(N))$.
Intuition about the notations

<table>
<thead>
<tr>
<th>notation</th>
<th>intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>O (Big-Oh)</td>
<td>$T(N) \leq g(n)$</td>
</tr>
<tr>
<td>Ω (Big-Omega)</td>
<td>$T(N) \geq g(n)$</td>
</tr>
<tr>
<td>Θ (Theta)</td>
<td>$T(N) = g(n)$</td>
</tr>
<tr>
<td>o (little-Oh)</td>
<td>$T(N) < g(n)$</td>
</tr>
</tbody>
</table>