CSE 373: Data Structures and Algorithms

Lecture 3: Math Review/Asymptotic Analysis
Announcements

• Programming Project #1
 – Getting Help
 • General Questions → Message board
 – Feel free to answer/respond yourselves
 – Please no code/specifics – general ideas only
 • Specific/Implementation Questions → Office Hours (on course website) or email cse373-staff AT cs DOT washington DOT edu (read by myself and the three TAs)
 – No turnin yet
 – Using sox

• Want to add CSE 373? See me after class.
Motivation

• So much data!!
 – Human genome: 3.2×10^9 base pairs
 • If there are 6.8×10^9 on the planet, how many base pairs of human DNA?
 – Earth surface area: 1.49×10^8 km2
 • How many photos if taking a photo of each m2?
 • For every day of the year (3.65×10^2)?

• But aren't computers getting faster and faster?
Why algorithm analysis?

• As problem sizes get bigger, analysis is becoming *more* important.

• The difference between good and bad algorithms is getting bigger.

• Being able to analyze algorithms will help us identify good ones without having to program them and test them first.
Measuring Performance: Empirical Approach

• Implement it, run it, time it (averaging trials)
 – Pros?

 – Cons?
Measuring Performance: Empirical Approach

• Implement it, run it, time it (averaging trials)
 – Pros?
 • Find out how the system effects performance
 • Stress testing – how does it perform in dynamic environment
 • No math!
 – Cons?
 • Need to implement code
 • Can be hard to estimate performance
 • When comparing two algorithms, all other factors need to be held constant (e.g., same computer, OS, processor, load)
Measuring Performance: Analytical Approach

• Use a simple model for basic operation costs

• Computational Model
 – has all the basic operations: +, -, *, /, =, comparisons
 – fixed sized integers (e.g., 32-bit)
 – infinite memory
 – all basic operations take exactly one time unit (one CPU instruction) to execute
Measuring Performance: Analytical Approach

• Analyze steps of algorithm, estimating amount of work each step takes
 – Pros?
 • Independent of system-specific configuration
 • Good for estimating
 • Don't need to implement code
 – Cons?
 • Won't give you info exact runtimes optimizations made by the architecture (i.e. cache)
 • Only gives useful information for large problem sizes
 • In real life, not all operations take exactly the same time and have memory limitations
Analyzing Performance

• General “rules” to help measure how long it takes to do things:

 Basic operations Constant time

 Consecutive statements Sum of times x

 Conditionals Test, plus larger branch cost

 Loops Sum of iterations

 Function calls Cost of function body

 Recursive functions Solve recurrence relation...
Efficiency examples

statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {
 statement4;
}

for (int i = 1; i <= N; i++) {
 statement5;
 statement6;
 statement7;
}
Efficiency examples

statement1;
statement2;
statement3;

\[
\text{for (int } i = 1; i \leq N; i++) \{ \\
\text{statement4; } \\
\}
\]

\[
\text{for (int } i = 1; i \leq N; i++) \{ \\
\text{statement5; } \\
\text{statement6; } \\
\text{statement7; } \\
\}
\]

\[
3 \\
3N \\
4N + 3
\]
Efficiency examples 2

```cpp
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N; j++) {
        statement1;
    }
}

for (int i = 1; i <= N; i++) {
    statement2;
    statement3;
    statement4;
    statement5;
}
```
Efficiency examples 2

```java
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N; j++) {
        statement1;
    }
}

for (int i = 1; i <= N; i++) {
    statement2;
    statement3;
    statement4;
    statement5;
}
```

- How many statements will execute if $N = 10$? If $N = 1000$?
Relative rates of growth

• most algorithms' runtime can be expressed as a function of the input size N

• rate of growth: measure of how quickly the graph of a function rises

• goal: distinguish between fast- and slow-growing functions
 – we only care about very large input sizes
 (for small sizes, most any algorithm is fast enough)
 – this helps us discover which algorithms will run more quickly or slowly, for large input sizes

• most of the time interested in worst case performance; sometimes look at best or average performance
Growth rate example

Consider these graphs of functions. Perhaps each one represents an algorithm:

\[n^3 + 2n^2 \]
\[100n^2 + 1000 \]

- Which grows faster?
Growth rate example

• How about now?
Big-Oh notation

• Defn:
 \[T(N) = O(f(N)) \]
 if there exist positive constants \(c, n_0 \) such that:
 \[T(N) \leq c \cdot f(N) \]
 for all \(N \geq n_0 \)

• idea: We are concerned with how the function grows when \(N \) is large. We are not picky about constant factors: coarse distinctions among functions

• Lingo: "\(T(N) \) grows no faster than \(f(N) \)."
Big-Oh example problems

- $n = O(2n)$?
- $2n = O(n)$?
- $n = O(n^2)$?
- $n^2 = O(n)$?
- $n = O(1)$?
- $100 = O(n)$?
- $214n + 34 = O(2n^2 + 8n)$?
Preferred big-Oh usage

• pick tightest bound. If \(f(N) = 5N \), then:

 \[
 f(N) = O(N^5) \\
 f(N) = O(N^3) \\
 f(N) = O(N \log N) \\
 f(N) = O(N) \quad \leftarrow \text{preferred}
 \]

• ignore constant factors and low order terms

 \[
 T(N) = O(N), \quad \text{not} \quad T(N) = O(5N) \\
 T(N) = O(N^3), \quad \text{not} \quad T(N) = O(N^3 + N^2 + N \log N)
 \]

 – Wrong: \(f(N) \leq O(g(N)) \)
 – Wrong: \(f(N) \geq O(g(N)) \)
Show $f(n) = O(n)$

Claim: $n^2 + 100n = O(n^2)$

Proof: Must find c, n_0 such that for all $n > n_0$,
$n^2 + 100n \leq cn^2$
sum = 0;
for (int i = 1; i <= N * N; i++) {
 for (int j = 1; j <= N * N * N; j++) {
 sum++;
 }
}

Efficiency examples 3

sum = 0;
for (int i = 1; i <= N * N; i++) {
 for (int j = 1; j <= N * N * N; j++) {
 sum++;
 }
}

• So what is the Big-Oh?
Math background: Exponents

• Exponents
 – X^Y, or "X to the Y\text{th} power";
 X multiplied by itself Y times

• Some useful identities
 – $X^A X^B = X^{A+B}$
 – $X^A / X^B = X^{A-B}$
 – $(X^A)^B = X^{AB}$
 – $X^N + X^N = 2X^N$
 – $2^N + 2^N = 2^{N+1}$
Efficiency examples 4

```c
sum = 0;
for (int i = 1; i <= N; i += c) {
    sum++;
}
```
Efficiency examples 4

```java
sum = 0;
for (int i = 1; i <= N; i += c) {
    sum++;
}
```

• What is the Big-Oh?
 – Intuition: Adding to the loop counter means that the loop runtime grows linearly when compared to its maximum value n.
Efficiency examples 5

```
sum = 0;
for (int i = 1; i <= N; i *= c) {
    sum++;
}
```

- Intuition: Multiplying the loop counter means that the maximum value n must grow exponentially to linearly increase the loop runtime
Efficiency examples 5

```c
sum = 0;
for (int i = 1; i <= N; i *= c) {
    sum++;
}
```

- What is the Big-Oh?
Math background: Logarithms

• Logarithms
 – *definition*: \(X^A = B \) if and only if \(\log_x B = A \)
 – *intuition*: \(\log_x B \) means:
 "the power \(X \) must be raised to, to get \(B \)"

 – In this course, a logarithm with no base implies base 2.
 \(\log B \) means \(\log_2 B \)

• Examples
 – \(\log_2 16 = 4 \) (because \(2^4 = 16 \))
 – \(\log_{10} 1000 = 3 \) (because \(10^3 = 1000 \))
Logarithm identities

Identities for logs with addition, multiplication, powers:

- \(\log (AB) = \log A + \log B \)
- \(\log (A/B) = \log A - \log B \)
- \(\log (A^B) = B \log A \)

Identity for converting bases of a logarithm:

- \(\log_A B = \frac{\log_C B}{\log_C A} \quad A, B, C > 0, A \neq 1 \)

- example:
 \(\log_4 32 = (\log_2 32) / (\log_2 4) \)
 \(= 5 / 2 \)
Logarithm problem solving

• When presented with an expression of the form:
 – \(\log_a X = Y \)
 and trying to solve for \(X \), raise both sides to the \(a \) power.
 – \(X = a^Y \)

• When presented with an expression of the form:
 – \(\log_a X = \log_b Y \)
 and trying to solve for \(X \), find a common base between the logarithms using the identity on the last slide.
 – \(\log_a X = \log_a Y / \log_a b \)
Logarithm practice problems

• Determine the value of x in the following equation.
 – $\log_7 x + \log_7 13 = 3$

• Determine the value of x in the following equation.
 – $\log_8 4 - \log_8 x = \log_8 5 + \log_{16} 6$