1. (4 points) Show that the function \(\log_2(2n) \) is \(O(\log n) \). You will need to use the definition of \(O(f(n)) \) to do this. In other words, find values for \(c \) and \(n_0 \) such that the definition of big-O holds true as we did with the examples in lecture. For full credit, please show the steps you took to arrive at your \(c \) and \(n_0 \).

2. (6 points) (adapted from Weiss 2.1) Order the following function \(s \) by growth rate:

\[N^2, \ N \log N, \ 2/N, \ 2^N, \ 83, \ N^2 \log N, \ N!, \ N^{1.5}, \ N^3, \ \log N, \ N \log (N^2), \ 4^{\log N}, \ N \]

Indicate which functions grow at the same rate. Recall that a function \(f(N) \) grows at the same rate as function \(g(N) \) if \(f(N) = \Theta(g(N)) \).

3. (8 points) Weiss question 2.2 on p.50. You do not need to prove an item is true (just saying true is enough for full credit), but you must give a counter example in order to demonstrate an item is false if you want full credit. To give a counter example, give values for \(T_1(N), T_2(N), \) and \(f(N) \) for which the statement is false.

4. (10 points) (adapted from Weiss 2.7) Give the Big-Oh for each of the following code excerpts. For parts (a) – (c), verify your Big-Oh doing an precise algorithm analysis, using summations and reducing to closed forms as demonstrated in class. You may want to refer to section 1.2.3 in the book for series formulas. For full credit, show your work of how you used summations to reduced to closed form. For part (d), give a brief explanation as to how you came up with your Big-Oh.

\[a) \sum = 0; \]
\[\text{for } (i = 0; i < n; i++) \{ \] \[\text{ for } (j = 0; j < n; j++) \{ \] \[\text{ sum++; } \] \[\text{ sum++; } \] \[\} \] \[\} \]

\[b) \sum = 0; \]
\[\text{for } (i = 0; i < n; i++) \{ \] \[\text{ for } (j = 0; j < 3 * i; j++) \{ \] \[\text{ sum++; } \] \[\} \] \[\text{ for } (k = 0; k < 100000; k++) \{ \] \[\text{ sum++; } \] \[\} \]
c) \[\text{sum} = 0; \]
 \[
 \text{for } (i = 0; i < n; i++) \{ \text{for } (j = 0; j < i \times i; j++) \{
 \text{sum}++; \}
 \} \]

\[\text{d) sum} = 0; \]
\[
\text{for } (i = 0; i < n; i++) \{ \text{for } (j = 0; j < i \times i; j++) \{
\text{if } (j \% i == 0) \{
\text{for } (k = 0; k < j; k++) \{
\text{sum}++; \}
\} \}
\} \]

5. (12 points)

(a) Write a Java method (your code should probably be under twenty lines)
\[
\text{public static int firstNonsmallerIndex(int[] arr, int val)} \]
that takes in an array in sorted order and a value, and returns the first index of a
value equal or larger, or -1 if value is larger than the max.

Your method must run in O(log N) time provided the list has few duplicates.
For example, if \[\text{arr} = \{1,2,3,3,3,4,5,5,14,17\}\], then
\[
\text{firstNonsmallerIndex}(\text{arr}, 3) \text{ returns 2,}
\text{firstNonsmallerIndex}(\text{arr}, 4) \text{ returns 5,}
\text{firstNonsmallerIndex}(\text{arr}, -1) \text{ returns 0,}
\text{firstNonsmallerIndex}(\text{arr}, 23) \text{ returns -1, and}
\text{firstNonsmallerIndex}(\text{arr}, 15) \text{ returns 9.}
\]

Hints: Your code will look similar to binary search. Once you have found one
non-smaller index, it doesn't mean that it is the first non-smaller index. In other
words, you should keep on searching until you are sure you have found the first
non-smaller index.

(b) After implementing your method in Java and ensuring that it is correct, run
timing tests on your method with arrays of different sizes. Use the method
\text{createRandomSortedArray} (found on the next page) and
\text{System.nanoTime()} (as seen in lecture) to help you create random sorted
arrays and run your timing tests. Answer the following questions:

- What array sizes did you choose and why?
- What were the runtimes of each array size?
- Did your runtimes increase as you expected according to the Big-Oh of
 your algorithm? Why or why not?
For part (a) turn in your \texttt{firstNonsmallerIndex} method by printing it out and attaching it to your homework or by writing it on your homework pages. For part (b) you only need to turn in the answers to the three questions above; you don't need to turn in your time testing code.

```java
import java.util.*;

public static int[] createRandomSortedArray(int size) {
    Random rand = new Random();
    int[] array = new int[size];
    for (int i = 0; i < size; i++) {
        // pick random numbers (subtract a bit so that some
        // are negative)
        array[i] = rand.nextInt(size * 3) - size / 4;
    }
    Arrays.sort(array);
    return array;
}
```