CSE 373: Data Structures and Algorithms

Lecture 24: Graphs VI
Minimum Spanning Tree Problem

• Input: Undirected Graph $G = (V, E)$ and a cost function C from E to non-negative real numbers. $C(e)$ is the cost of edge e.

• Output: A spanning tree T with minimum total cost. That is: T that minimizes

$$C(T) = \sum_{e \in T} C(e)$$
Observations about Spanning Trees

• For any spanning tree T, inserting an edge e_{new} not in T creates a cycle

• But
 – Removing any edge e_{old} from the cycle gives back a spanning tree
 – If e_{new} has a lower cost than e_{old} we have progressed!
Find the MST
Two Different Approaches

Prim’s Algorithm
Looks familiar!

Kruskals’s Algorithm
Completely different!
Prim’s algorithm

Idea: Grow a tree by adding an edge from the “known” vertices to the “unknown” vertices. Pick the edge with the smallest weight.
Prim’s algorithm

Starting from empty T, choose a vertex at random and initialize

$V = \{A\}, \quad T = \{\}$
Prim’s algorithm

Choose the vertex u not in V such that edge weight from u to a vertex in V is minimal (greedy!)

$V = \{A, C\}$

$T = \{ (A, C) \}$
Prim’s algorithm

Repeat until all vertices have been chosen

\(V = \{A, C, D\} \)

\(T = \{ (A, C), (C, D) \} \)
Prim’s algorithm

\[V = \{A,C,D,E\} \]
\[T = \{ (A,C), (C,D), (D,E) \} \]
Prim’s algorithm

\[V = \{A,C,D,E,B\} \]

\[T = \{(A,C), (C,D), (D,E), (E,B)\} \]
Prim’s algorithm

\[V = \{A,C,D,E,B,F\} \]
\[T = \{ (A,C), (C,D), (D,E), (E,B), (B,F) \} \]
Prim’s algorithm

\[V = \{A, C, D, E, B, F, G\} \]

\[T = \{ (A, C), (C, D), (D, E), (E, B), (B, F), (E, G) \} \]
Prim’s algorithm

Final Cost: $1 + 3 + 4 + 1 + 1 + 6 = 16$
Prim's Algorithm Implementation

`Prim()`:

for each vertex v: // Initialization
 v's distance := infinity.
 v's previous := none.
 mark v as unknown.
choose random node v1.
v1's distance := 0.
List := {all vertices}.
T := {}.

while List is not empty:
 v := remove List vertex with minimum distance.
 add edge {v, v's previous} to T.
 mark v as known.
 for each unknown neighbor n of v:
 if distance(v, n) is smaller than n's distance:
 n's distance := distance(v, n).
 n's previous := v.

return T.
Prim’s algorithm Analysis

• How is it different from Djikstra's algorithm?

• If the step that removes unknown vertex with minimum distance is done with binary heap the running time is:
 \[O(|E|\log |V|) \]
Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

G=(V,E)
Example of Kruskal 1

\{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 2

\{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 2

\{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 3
Example of Kruskal 4
Example of Kruskal 5

\{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 6
Example of Kruskal 7
Example of Kruskal 7

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 8,9

\begin{itemize}
\item \{7,4\}
\item \{2,1\}
\item \{7,5\}
\item \{5,6\}
\item \{5,4\}
\item \{1,6\}
\item \{2,7\}
\item \{2,3\}
\item \{3,4\}
\item \{1,5\}
\end{itemize}

\begin{tabular}{cccccccc}
0 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 4
\end{tabular}
Kruskal's Algorithm Implementation

Kruskals():

sort edges in increasing order of length \((e_1, e_2, e_3, ..., e_m)\).

\[
T := \{\}.
\]

for i = 1 to m

if \(e_i\) does not add a cycle:

add \(e_i\) to \(T\).

return \(T\).

• But how can we determine that adding \(e_i\) to \(T\) won't add a cycle?