CSE 373: Data Structures and Algorithms

Lecture 23: Graphs V
Dijkstra pseudocode

\textbf{Dijkstra}(v_1, v_2):
\begin{align*}
&\text{for each vertex } v: & \quad \text{// Initialization} \\
& \quad v's \text{ distance} := \text{infinity.} \\
& \quad v's \text{ previous} := \text{none.} \\
& v1's \text{ distance} := 0. \\
& List := \{\text{all vertices}\}.
\end{align*}

\textbf{while} List is not empty:
\begin{align*}
& v := \text{remove List vertex with minimum distance.} \\
& \text{mark } v \text{ as known.} \\
& \text{for each unknown neighbor } n \text{ of } v: \\
& \quad \text{dist} := v's \text{ distance} + \text{edge } (v, n)'s \text{ weight.} \\
& \quad \text{if dist is smaller than } n's \text{ distance:} \\
& \quad \quad n's \text{ distance} := \text{dist.} \\
& \quad \quad n's \text{ previous} := v.
\end{align*}

reconstruct path from v2 back to v1, following previous pointers.
Time Complexity: Using List

The simplest implementation of the Dijkstra's algorithm stores vertices in an ordinary linked list or array
 – Good for dense graphs (many edges)

- $|V|$ vertices and $|E|$ edges
- Initialization $O(|V|)$
- While loop $O(|V|)$
 – Find and remove min distance vertices $O(|V|)$
 – Potentially $|E|$ updates
 • Update costs $O(1)$
- Reconstruct path $O(|E|)$

Total time $O(|V|^2 + |E|) = O(|V|^2)$
Time Complexity: Priority Queue

For sparse graphs, (i.e. graphs with much less than $|V^2|$ edges) Dijkstra's implemented more efficiently by *priority queue*

- Initialization $O(|V|)$ using $O(|V|)$ `buildHeap`
- While loop $O(|V|)$
 - Find and remove min distance vertices $O(\log |V|)$ using $O(\log |V|)$ `deleteMin`
 - Potentially $|E|$ updates
 - Update costs $O(\log |V|)$ using `decreaseKey`
- Reconstruct path $O(|E|)$

Total time $O(|V|\log |V| + |E|\log |V|) = O(|E|\log |V|)$
- $|V| = O(|E|)$ assuming a connected graph
Dijkstra's Exercise

- Use Dijkstra's algorithm to determine the lowest cost path from vertex A to all of the other vertices in the graph. Keep track of previous vertices so that you can reconstruct the path later.
Topological Sort

Problem: Find an order in which all these courses can be taken.

Example: 142 → 143 → 378
 → 370 → 321 → 341 → 322
 → 326 → 421 → 401

In order to take a course, you must take all of its prerequisites first.
Given a digraph $G = (V, E)$, find a total ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering
Any total ordering in which all the arrows go to the right is a valid solution.

Note that F can go anywhere in this list because it is not connected. Also the solution is not unique.
Any ordering in which an arrow goes to the left is not a valid solution

NO!
Only acyclic graphs can be topologically sorted

• A directed graph with a cycle cannot be topologically sorted.
Topological sort algorithm: 1

Step 1: Identify vertices that have no incoming edges
- The “in-degree” of these vertices is zero
Topo sort algorithm: 1a

Step 1: Identify vertices that have no incoming edges
- If *no such vertices*, graph has cycle(s)
- Topological sort not possible – Halt.

Example of a cyclic graph
Step 1: Identify vertices that have no incoming edges
 • Select one such vertex
Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.
Continue until done

Repeat Step 1 and Step 2 until graph is empty

Select

B → C → D → E → F → A
Select B. Copy to sorted list. Delete B and its edges.
Select C. Copy to sorted list. Delete C and its edges.
Select D. Copy to sorted list. Delete D and its edges.
Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.
Topological Sort Algorithm

1. Store each vertex’s In-Degree in an hash table D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 (a) Dequeue and output a vertex
 (b) Reduce In-Degree of all vertices adjacent to it by 1
 (c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x]; // y gets a linked list of vertices
 while y ≠ null do
 D[y.value] := D[y.value] - 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile
Topo Sort w/ queue

Queue (before):
Queue (after): 1, 6

Answer:
Topo Sort w/ queue

Queue (before): 1, 6
Queue (after): 6, 2

Answer: 1
Topo Sort w/ queue

Queue (before): 6, 2
Queue (after): 2

Answer: 1, 6
Topo Sort w/ queue

Queue (before): 2
Queue (after): 3

Answer: 1, 6, 2
Topo Sort w/ queue

Queue (before): 3
Queue (after): 4

Answer: 1, 6, 2, 3
Topo Sort w/ queue

Queue (before): 4
Queue (after): 5

Answer: 1, 6, 2, 3, 4
Topo Sort w/ queue

Queue (before): 5
Queue (after):

Answer: 1, 6, 2, 3, 4, 5
Topo Sort w/ stack

Stack (before):
Stack (after): 1, 6

Answer:
Topo Sort w/ stack

Stack (before): 1, 6
Stack (after): 1, 7, 8

Answer: 6
Topo Sort w/ stack

Stack (before): 1, 7, 8
Stack (after): 1, 7

Answer: 6, 8
Topo Sort w/ stack

Stack (before): 1, 7
Stack (after): 1

Answer: 6, 8, 7
Topo Sort w/ stack

Stack (before): 1
Stack (after): 2

Answer: 6, 8, 7, 1
Topo Sort w/ stack

Stack (before): 2
Stack (after): 3

Answer: 6, 8, 7, 1, 2
Topo Sort w/ stack

Stack (before): 3
Stack (after): 4

Answer: 6, 8, 7, 1, 2, 3
Topo Sort w/ stack

Stack (before): 4
Stack (after): 5

Answer: 6, 8, 7, 1, 2, 3, 4
Topo Sort w/ stack

Stack (before): 5
Stack (after):

Answer: 6, 8, 7, 1, 2, 3, 4, 5
TopoSort Fails (cycle)

Queue (before):
Queue (after): 1

Answer:
TopoSort Fails (cycle)

Queue (before): 1
Queue (after): 2

Answer: 1
TopoSort Fails (cycle)

Queue (before): 2
Queue (after):

Answer: 1, 2
What is the run-time???

Initialize D // Mapping of vertex to its in-degree
Queue $Q := \{\text{Vertices with in-degree 0}\}$
while notEmpty(Q) do
 $x := \text{Dequeue}(Q)$
 Output(x)
 $y := A[x]$; // y gets a linked list of vertices
 while $y \neq \text{null}$ do
 $D[y.value] := D[y.value] - 1$;
 if $D[y.value] = 0$ then Enqueue($Q, y.value$);
 $y := y.next$;
 endwhile
endwhile
Topological Sort Analysis

• Initialize In-Degree array: \(O(|V| + |E|) \)
• Initialize Queue with In-Degree 0 vertices: \(O(|V|) \)
• Dequeue and output vertex:
 – \(|V|\) vertices, each takes only \(O(1) \) to dequeue and output: \(O(|V|) \)
• Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 – \(O(|E|) \)
• For input graph \(G=(V,E) \) run time = \(O(|V| + |E|) \)
 – Linear time!
Minimum spanning tree

- **tree**: a connected, directed acyclic graph
- **spanning tree**: a subgraph of a graph, which meets the constraints to be a tree (connected, acyclic) and connects every vertex of the original graph
- **minimum spanning tree**: a spanning tree with weight less than or equal to any other spanning tree for the given graph
Min. span. tree applications

• Consider a cable TV company laying cable to a new neighborhood...
 – Can only bury the cable only along certain paths, then a graph could represent which points are connected by those paths.
 – Some of paths may be more expensive (i.e. longer, harder to install), so these paths could be represented by edges with larger weights.
 – A spanning tree for that graph would be a subset of those paths that has no cycles but still connects to every house.

• Similar situations: installing electrical wiring in a house, installing computer networks between cities, building roads between neighborhoods, etc.
Spanning Tree Problem

• Input: An undirected graph $G = (V, E)$. G is connected.

• Output: T subset of E such that
 – (V, T) is a connected graph
 – (V, T) has no cycles
Spanning Tree Psuedocode

\texttt{spanningTree()}: \\
\hspace{1em} \textit{pick random vertex v.} \\
\hspace{1em} \texttt{T := \{\}} \\
\hspace{1em} \texttt{spanningTree(v, T)} \\
\hspace{1em} \texttt{return T.}

\texttt{spanningTree(v, T)}: \\
\hspace{1em} \textit{mark v as visited.} \\
\hspace{2em} \texttt{for each neighbor v}_{i} \texttt{ of v where there is an edge from v to v}_{i}: \\
\hspace{3em} \textit{if v}_{i} \texttt{ is not visited} \\
\hspace{4em} \texttt{add edge \{v, v}_{i}\} to T.} \\
\hspace{3em} \texttt{spanningTree(v}_{i}, T) \\
\hspace{2em} \texttt{return T.}
Example of Depth First Search

ST(1)
Example Step 2

{1,2}
Example Step 3

\{1,2\} \{2,7\}
Example Step 4

{1,2} {2,7} {7,5}
Example Step 5

\{1,2\} \{2,7\} \{7,5\} \{5,4\}
Example Step 6

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\}
Example Step 7

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\}

ST(1)
ST(2)
ST(7)
ST(5)
ST(4)
ST(3)
Example Step 8

{1,2} {2,7} {7,5} {5,4} {4,3}

ST(1)
ST(2)
ST(7)
ST(5)
ST(4)
Example Step 9

{1,2} {2,7} {7,5} {5,4} {4,3}

ST(1)
ST(2)
ST(7)
ST(5)
ST(4)
Example Step 10

{1,2} {2,7} {7,5} {5,4} {4,3}

ST(1)
ST(2)
ST(7)
ST(5)
Example Step 11

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

ST(1)
ST(2)
ST(7)
ST(5)
ST(6)
Example Step 12

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\} \{5,6\}
Example Step 13

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\} \{5,6\}
Example Step 14

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\} \{5,6\}

ST(1)
ST(2)
ST(7)
Example Step 15

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\} \{5,6\}
Example Step 16

ST(1)

\{1,2\} \{2,7\} \{7,5\} \{5,4\} \{4,3\} \{5,6\}
Minimum Spanning Tree Problem

• Input: Undirected Graph $G = (V, E)$ and a cost function C from E to non-negative real numbers. $C(e)$ is the cost of edge e.

• Output: A spanning tree T with minimum total cost. That is: T that minimizes

$$C(T) = \sum_{e \in T} C(e)$$
Observations about Spanning Trees

• For any spanning tree T, inserting an edge e_{new} not in T creates a cycle

• But
 – Removing any edge e_{old} from the cycle gives back a spanning tree
 – If e_{new} has a lower cost than e_{old} we have progressed!
Find the MST
Two Different Approaches

Prim’s Algorithm
Looks familiar!

Kruskals’s Algorithm
Completely different!
Prim’s algorithm

Idea: Grow a tree by adding an edge from the “known” vertices to the “unknown” vertices. Pick the edge with the smallest weight.
Prim’s algorithm

Starting from empty T, choose a vertex at random and initialize

$V = \{A\}, \ T = \{\}$
Prim’s algorithm

Choose the vertex u not in V such that edge weight from u to a vertex in V is minimal (greedy!)

$V = \{A, C\}$

$T = \{ (A, C) \}$
Prim’s algorithm

Repeat until all vertices have been chosen

$V = \{A, C, D\}$

$T = \{(A, C), (C, D)\}$
Prim’s algorithm

\[V = \{A, C, D, E\} \]

\[T = \{ (A, C), (C, D), (D, E) \} \]
Prim’s algorithm

\[V = \{ A, C, D, E, B \} \]

\[T = \{ (A, C), (C, D), (D, E), (E, B) \} \]
Prim’s algorithm

\[V = \{A, C, D, E, B, F\} \]
\[T = \{ (A, C), (C, D), (D, E), (E, B), (B, F) \} \]
Prim’s algorithm

\[V = \{ A, C, D, E, B, F, G \} \]

\[T = \{ (A, C), (C, D), (D, E), (E, B), (B, F), (E, G) \} \]
Prim’s algorithm

Final Cost: $1 + 3 + 4 + 1 + 1 + 6 = 16$
Prim's Algorithm Implementation

Prim():
 for each vertex v: // Initialization
 v's distance := infinity.
 v's previous := none.
 mark v as unknown.
 choose random node v1.
 v1's distance := 0.
 List := {all vertices}.
 T := {}.
 while List is not empty:
 v := remove List vertex with minimum distance.
 add edge {v, v's previous} to T.
 mark v as known.
 for each unknown neighbor n of v:
 if distance(v, n) is smaller than n's distance:
 n's distance := distance(v, n).
 n's previous := v.
 return T.
Prim’s algorithm Analysis

• How is it different from Djikstra's algorithm?

• If the step that removes unknown vertex with minimum distance is done with binary heap the running time is:
 \[O(|E| \log |V|) \]