CSE 373: Data Structures and Algorithms

Lecture 19: Graphs
What are graphs?

• Yes, this is a graph....

• But we are interested in a different kind of “graph”
Airline Routes

Nodes = cities
Edges = direct flights
Computer Networks

Nodes = computers
Edges = transmission rates
CSE Course Prerequisites at UW

Nodes = courses
Directed edge = prerequisite
Graphs

• **graph**: a data structure containing
 – a set of vertices V
 – a set of edges E, where an edge represents a connection between 2 vertices
 – $G = (V, E)$
 – edge is a pair (v, w) where v, w in V

• the graph at right: $V = \{a, b, c\}$ and $E = \{(a, b), (b, c), (c, a)\}$

 – Assuming that a graph can only have one edge between a pair of vertices and cannot have an edge to itself, what is the maximum number of edges a graph can contain, relative to the size of the vertex set V?
Paths

• **path**: a path from vertex A to B is a sequence of edges that can be followed starting from A to reach B
 – can be represented as vertices visited or edges taken
 – example: path from V to Z: \{b, h\} or \{V, X, Z\}

• **reachability**: \(v_1\) is reachable from \(v_2\) if a path exists from \(V_1\) to \(V_2\)

• **connected** graph: one in which it's possible to reach any node from any other
 – is this graph connected?
Cycles

• **cycle**: path from one node back to itself
 – example: \{b, g, f, c, a\} or \{V, X, Y, W, U, V\}

• **loop**: edge directly from node to itself
 – many graphs don't allow loops
Weighted graphs

• **weight**: (optional) cost associated with a given edge

• example: graph of airline flights
 – if we were programming this graph, what information would we have to store for each vertex / edge?
Directed graphs

- **directed graph (digraph):** edges are one-way connections between vertices
 - if graph is directed, a vertex has a separate *in/out degree*
Trees as Graphs

• Every tree is a graph with some restrictions:
 – the tree is directed
 – there is exactly one directed path from the root to every node
More terminology

- **degree**: number of edges touching a vertex
 - example: W has degree 4
 - what is the degree of X? of Z?

- **adjacent vertices**: connected directly by an edge
Graph questions

• Are the following graphs directed or not directed?
 – Buddy graphs of instant messaging programs?
 (vertices = users, edges = user being on another's buddy list)
 – bus line graph depicting all of Seattle's bus stations and routes
 – graph of movies in which actors have appeared together

• Are these graphs potentially cyclic? Why or why not?
Graph exercise

• Consider a graph of instant messenger buddies.
 – What do the vertices represent? What does an edge represent?
 – Is this graph directed or undirected? Weighted or unweighted?
 – What does a vertex's degree mean? In degree? Out degree?
 – Can the graph contain loops? cycles?

• Consider this graph data:
 – Jessica's buddy list: Meghan, Alan, Martin.
 – Meghan's buddy list: Alan, Lori.
 – Toni's buddy list: Lori, Meghan.
 – Martin's buddy list: Lori, Meghan.
 – Alan's buddy list: Martin, Jessica.
 – Lori's buddy list: Meghan.
 – Compute the in/out degree of each vertex. Is the graph connected?
 – Who is the most popular? Least? Who is the most antisocial?
 – If we're having a party and want to distribute the message the most quickly, who should we tell first?
Depth-first search

- **depth-first search (DFS)**: finds a path between two vertices by exploring each possible path as many steps as possible before backtracking
 - often implemented recursively
DFS example

• All DFS paths from A to others (assumes ABC edge order)
 – A
 – A -> B
 – A -> B -> D
 – A -> B -> F
 – A -> B -> F -> E
 – A -> C
 – A -> C -> G

• What are the paths that DFS did not find?
DFS pseudocode

- Pseudo-code for depth-first search:

  ```
  dfs(v1, v2):
      dfs(v1, v2, {})
  dfs(v1, v2, path):
      path += v1.
      mark v1 as visited.
      if v1 is v2:
          path is found.
      for each unvisited neighbor v_i of v1 where there is an edge from v1 to v_i:
          if dfs(v_i, v2, path) finds a path, path is found.
      path -= v1.  path is not found.
  ```
DFS observations

• guaranteed to find a path if one exists
• easy to retrieve exactly what the path is (to remember the sequence of edges taken) if we find it
• *optimality*: not optimal. DFS is guaranteed to find a path, not necessarily the best/shortest path

 – Example: DFS(A, E) may return
 A -> B -> F -> E
Another DFS example

• Using DFS, find a path from BOS to LAX.
Breadth-first search

- **breadth-first search (BFS):** finds a path between two nodes by taking one step down all paths and then immediately backtracking

 - often implemented by maintaining a list or queue of vertices to visit

 - BFS always returns the path with the fewest edges between the start and the goal vertices
BFS example

• All BFS paths from A to others (assumes ABC edge order)
 – A
 – A -> B
 – A -> C
 – A -> E
 – A -> B -> D
 – A -> B -> F
 – A -> C -> G

• What are the paths that BFS did not find?
BFS pseudocode

• Pseudo-code for breadth-first search:

\[
\text{bfs}(v_1, v_2):
\]
\[
\text{List} := \{v_1\}.
\]
\[
\text{mark } v_1 \text{ as visited.}
\]

\[
\text{while List not empty:}
\]
\[
\text{v} := \text{List.removeFirst()}.\]
\[
\text{if v is } v_2:\]
\[
\text{path is found.}
\]

\[
\text{for each unvisited neighbor } v_i \text{ of } v \text{ where there is an edge from } v \text{ to } v_i:\]
\[
\text{mark } v_i \text{ as visited}
\]
\[
\text{List.addLast}(v_i).
\]

\[
\text{path is not found.}
\]
BFS observations

• **optimality:**
 – in unweighted graphs, optimal. (fewest edges = best)
 – In weighted graphs, not optimal.
 (path with fewest edges might not have the lowest weight)

• **disadvantage:** harder to reconstruct what the actual path is once you find it
 – conceptually, BFS is exploring many possible paths in parallel, so it's not easy to store a Path array/list in progress

• **observation:** any particular vertex is only part of one partial path at a time
 – We can keep track of the path by storing *predecessors* for each vertex (references to the previous vertex in that path)
Another BFS example

- Using BFS, find a path from BOS to LAX.
DFS, BFS runtime

• What is the expected runtime of DFS, in terms of the number of vertices V and the number of edges E?

• What is the expected runtime of BFS, in terms of the number of vertices V and the number of edges E?

• Answer: $O(|V| + |E|)$
 – each algorithm must potentially visit every node and/or examine every edge once.
 – why not $O(|V| \times |E|)$?

• What is the space complexity of each algorithm?