CSE 373: Data Structures and Algorithms

Lecture 10: Trees II
Implementing Set with BST

• Each Set entry adds a node to tree
 – Node contains String element, references to left/right subtree

• Tree organized for binary search
 – Quickly search or place to insert/remove element
public interface StringSet {
 public boolean add(String value);

 public boolean contains(String value);

 public void print();

 public boolean remove(String value);

 public int size();
}
// A StringTreeSet represents a Set of Strings.
public class StringTreeSet {
 private StringTreeNode root; // null for an empty set

 methods
}

– Client code talks to the
 StringTreeSet, not to the node
 objects inside it

– Methods of the StringTreeSet
 create and manipulate the nodes,
 their data and links between them
Set implementation: contains (search)

```java
public boolean contains(String value) {
    return contains(root, value);
}

private boolean contains(StringTreeNode node, String value) {
    if (node == null) {
        return false; // not in set
    } else if (node.data.compareTo(value) == 0) {
        return true; // found!
    } else if (node.data.compareTo(value) > 0) {
        return contains(node.left, value); // search left
    } else {
        return contains(node.right, value); // search right
    }
}
```
Set implementation: insert

• Starts like `contains`
 – Trace out path where node should be

• Add node as new leaf
 – Don't change any other nodes or references
 – Correct place to maintain binary search tree property
Set implementation: insert

```java
public boolean add(String value) {
    int oldSize = size();
    this.root = add(root, value);
    return oldSize != size();
}

private StringTreeNode add(StringTreeNode node, String value) {
    if (node == null) {
        node = new StringTreeNode(value);
        numElements++;
    } else if (node.data.compareTo(value) == 0) {
        return node;
    } else if (node.data.compareTo(value) > 0) {
        node.left = add(node.left, value);
    } else {
        node.right = add(node.right, value);
    }
    return node;
}
```
Set implementation: remove

- Possible states for the node to be removed:
 - a leaf: replace with null
 - a node with a left child only: replace with left child
 - a node with a right child only: replace with right child
 - a node with both children: replace with min value from right

```java
set.remove("L");
```

Diagram:

```
root
  "L"
  "I"
  "P"
  "C" "J" "M" "X"
```

```
root
  "M"
  "I"
  "P"
  "C" "J" "X"
```
Set implementation: remove

```java
public boolean remove(String value) {
    int oldSize = numElements;
    root = remove(root, value);
    return oldSize > numElements;
}

protected StreeNode remove(StreeNode node, String value) {
    if (node == null) { return node;
} else if (node.data.compareTo(value) < 0) { node.right = remove(node.right, value);
} else if (node.data.compareTo(value) > 0) { node.left = remove(node.left, value);
} else {
    if (node.right != null && node.left != null) {
        node.data = getMinValue(node.right);
        node.right = remove(node.right, node.data);
    } else if (node.right != null) {
        node = node.right;
        numElements--;}
} else {
    node = node.left;
    numElements--;}
}
return node;
```
Evaluate Set as BST

• Space used
 – Overhead of two references per entry
 – BST adds nodes as needed; no excess capacity

• Runtime
 – add, contains take time proportional to tree height
 – height expected to be $O(\log N)$
A Balanced Tree

• Values: 2 8 14 15 18 20 21
 – Order added: 15, 8, 2, 20, 21, 14, 18
• Different tree structures possible
 – Depends on order inserted
• 7 nodes, expected height log 7 ≈ 3
• Perfectly balanced

```
        15
       / \   \
     8   20
    / \   / \
   2   14 18 21
```
Mostly Balanced Tree

- Same Values: 2 8 14 15 18 20 21
 - Order added: 20, 8, 21, 18, 14, 15, 2
- Mostly balanced, height 4/5
Degenerate Tree

- Same Values: 2 8 14 15 18 20 21
 - Order added: 2, 8, 14, 15, 18, 20, 21
- Totally unbalanced, height 7
Binary Trees: Some Numbers

Recall: height of a tree = length of longest path from the root to a leaf.

For binary tree of height h:

- max # of leaves: 2^h
- max # of nodes: $2^{(h + 1)} - 1$
- min # of leaves: 1
- min # of nodes: $h + 1$

We’re not going to do better than log(n) height, and we need something to keep us away from n.
Implementing Set ADT (Revisited)

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th>Remove</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted array</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$\Theta(\log(n)+n)$</td>
<td>$\Theta(\log(n) + n)$</td>
<td>$\Theta(\log(n))$</td>
</tr>
<tr>
<td>Linked list</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>BST (if balanced)</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
AVL Tree Motivation

Observation: the shallower the BST the better

• For a BST with \(n \) nodes
 – Average case height is \(\Theta(\log n) \)
 – Worst case height is \(\Theta(n) \)

• Simple cases such as insert(1, 2, 3, ..., \(n \)) lead to the worst case scenario: height \(\Theta(n) \)

Strategy: Don't let the tree get lopsided

• Constantly monitor balance for each subtree
• Rebalance subtree before going too far astray
Balanced Tree

- **Balanced Tree**: a tree in which heights of subtrees are approximately equal

unbalanced tree

balanced tree
Tree height calculation

• Height is max number of edges from root to leaf
 – height(null) = -1
 – height(1) = 0
 – height(A)?
 • Hint: it's recursive!
Tree balance and height

(a) The balanced tree has a height of: ____________

(b) The unbalanced tree has a height of: ____________