CSE 373: Data Structures and Algorithms

Lecture 6: Searching
Problem: Given a sorted array a of integers and an integer i, find the index of any occurrence of i if it appears in the array. If not, return -1.

- We could solve this problem using a standard iterative search; starting at the beginning, and looking at each element until we find i

- What is the runtime of an iterative search?

However, in this case, the array is sorted, so does that help us solve this problem more intelligently? Can recursion also help us?
Binary search algorithm

• Algorithm idea: Start in the middle, and only search the portions of the array that might contain the element i. Eliminate half of the array from consideration at each step.
 – can be written iteratively, but is harder to get right

• called **binary search** because it chops the area to examine in half each time
 – implemented in Java as method
    ```java
    Arrays.binarySearch in java.util package
    ```
Binary search example

i = 16

0 4 min
1 7
2 16
3 20 mid (too big!)
4 37
5 38
6 43 max
Binary search example

i = 16

0 4 min
1 7 mid (too small!)
2 16 max
3 20
4 37
5 38
6 43
Binary search example

\[i = 16 \]

\[\begin{array}{c|c}
 & 4 \\
0 & 4 \\
1 & 7 \\
2 & 16 \\
3 & 20 \\
4 & 37 \\
5 & 38 \\
6 & 43 \\
\end{array} \]

\text{min, mid, max (found it!)}
Binary search pseudocode

binary search array a for value i:
 if all elements have been searched,
 result is -1.
 examine middle element $a[mid]$.
 if $a[mid]$ equals i,
 result is mid.
 if $a[mid]$ is greater than i,
 binary search left half of a for i.
 if $a[mid]$ is less than i,
 binary search right half of a for i.
Runtime of binary search

• How do we analyze the runtime of binary search and recursive functions in general?

• binary search either exits immediately, when input size <= 1 or value found (base case), or executes itself on 1/2 as large an input (rec. case)
 – \(T(1) = c \)
 – \(T(2) = T(1) + c \)
 – \(T(4) = T(2) + c \)
 – \(T(8) = T(4) + c \)
 – ...
 – \(T(n) = T(n/2) + c \)

• How many times does this division in half take place?
Divide-and-conquer

• **divide-and-conquer algorithm**: a means for solving a problem that first separates the main problem into 2 or more smaller problems, then solves each of the smaller problems, then uses those sub-solutions to solve the original problem
 – 1: "divide" the problem up into pieces
 – 2: "conquer" each smaller piece
 – 3: (if necessary) combine the pieces at the end to produce the overall solution

 – binary search is one such algorithm
Recurrences, in brief

• How can we prove the runtime of binary search?

• Let's call the runtime for a given input size \(n \), \(T(n) \). At each step of the binary search, we do a constant number \(c \) of operations, and then we run the same algorithm on \(1/2 \) the original amount of input. Therefore:

\[
- T(n) = T(n/2) + c
\]

\[
- T(1) = c
\]

• Since \(T \) is used to define itself, this is called a recurrence relation.
Solving recurrences

• **Master Theorem:**
 A recurrence written in the form
 \[T(n) = a \times T(n / b) + f(n) \]

 (where \(f(n) \) is a function that is \(O(n^k) \) for some power \(k \))
 has a solution such that

 \[O(n^{\log_b a}), \quad a > b^k \]
 \[T(n) = O(n^k \log n), \quad a = b^k \]
 \[O(n^k), \quad a < b^k \]

• This form of recurrence is very common for divide-and-conquer algorithms
Runtime of binary search

• Binary search is of the correct format:
 \[T(n) = a \times T(n/b) + f(n) \]

 - \(T(n) = T(n/2) + c \)
 - \(T(1) = c \)

 - \(f(n) = c = O(1) = O(n^0) \) ... therefore \(k = 0 \)
 - \(a = 1, b = 2 \)

• \(1 = 2^0 \), therefore:
 \[T(n) = O(n^0 \log n) = O(\log n) \]

• (recurrences not needed for our exams)