CSE 373: Data Structures and Algorithms

Lecture 5: Math Review/Asymptotic Analysis III
Efficiency examples 6

```c
int sum = 0;
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i / 2; j += 2) {
        sum++;
    }
}
```
Math background: Arithmetic series

• Series

\[\sum_{i=j}^{k} Expr \]

– for some expression \(Expr \) (possibly containing \(i \)), means the sum of all values of \(Expr \) with each value of \(i \) between \(j \) and \(k \) inclusive

Example:

\[\sum_{i=0}^{4} (2i + 1) \]

\[= (2(0) + 1) + (2(1) + 1) + (2(2) + 1) \]
\[+ (2(3) + 1) + (2(4) + 1) \]
\[= 1 + 3 + 5 + 7 + 9 \]
\[= 25 \]
Series identities

• sum from 1 through N inclusive

\[\sum_{i=1}^{N} i = \frac{N(N + 1)}{2} \]

• is there an intuition for this identity?
 – sum of all numbers from 1 to N

 \[1 + 2 + 3 + \ldots + (N-2) + (N-1) + N \]

 – how many terms are in this sum? Can we rearrange them?
More series identities

• sum from a through N inclusive (when the series doesn't start at 1)

$$\sum_{i=a}^{N} i = \sum_{i=1}^{N} i - \sum_{i=1}^{a-1} i$$

• is there an intuition for this identity?
Series of constants

• sum of constants
 (when the body of the series doesn't contain the counter variable such as \(i \))

\[
\sum_{i=a}^{b} k = k \sum_{i=a}^{b} 1 = k(b - a + 1)
\]

• example:

\[
\sum_{i=4}^{10} 5 = 5 \sum_{i=4}^{10} 1 = 5(10 - 4 + 1) = 35
\]
Splitting series

for any constant k,

• splitting a sum with addition

$$\sum_{i=a}^{b} (i + k) = \sum_{i=a}^{b} i + \sum_{i=a}^{b} k$$

• moving out a constant multiple

$$\sum_{i=a}^{b} ki = k \sum_{i=a}^{b} i$$
Series of powers

- sum of powers of 2

\[\sum_{i=0}^{N} 2^i = 2^{N+1} - 1 \]

- \[1 + 2 + 4 + 8 + 16 + 32 = 64 - 1 = 63 \]
- think about binary representation of numbers...

\[
\begin{array}{c}
111111 \ (63) \\
+ \ 1 \ (1) \\
\hline
1000000 \ (64)
\end{array}
\]

- when the series doesn't start at 0:

\[\sum_{i=a}^{N} 2^i = \sum_{i=0}^{N} 2^i - \sum_{i=0}^{a-1} 2^i \]
Series practice problems

• Give a closed form expression for the following summation.

 – A closed form expression is one without the \sum or "...".

$$\sum_{i=0}^{N-2} 2i$$

• Give a closed form expression for the following summation.

$$\sum_{i=10}^{N-1} (i - 5)$$
Efficiency examples 6 (revisited)

int sum = 0;
for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= i / 2; j += 2) {
 sum++;
 }
}

• Compute the value of the variable sum after the following code fragment, as a closed-form expression in terms of input size n.
 – Ignore small errors caused by i not being evenly divisible by 2 and 4.
Efficiency examples 6 (revisited)

```c
int sum = 0;
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i / 2; j += 2) {
        sum++;
    }
}
```
Growth rate terminology (recap)

- \(f(n) = O(g(N)) \)
 - \(g(n) \) is an **upper bound** on \(f(n) \)
 - \(f(n) \) **grows no faster** than \(g(n) \)

- \(f(n) = \Omega(g(N)) \)
 - \(g(N) \) is a **lower bound** on \(f(n) \)
 - \(f(n) \) grows at least as fast as \(g(N) \)

- \(f(n) = \Theta(g(N)) \)
 - \(f(n) \) grows at the same rate as \(g(N) \)
Facts about big-Oh

• If $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$, then
 – $T_1(N) + T_2(N) = O(f(N) + g(N))$
 – $T_1(N) * T_2(N) = O(f(N) * g(N))$

• If $T(N)$ is a polynomial of degree k, then:
 $T(N) = \Theta(N^k)$
 – example: $17n^3 + 2n^2 + 4n + 1 = \Theta(n^3)$

• $\log^k N = O(N)$, for any constant k
Complexity classes

- **complexity class**: A category of algorithm efficiency based on the algorithm's relationship to the input size \(N \).

<table>
<thead>
<tr>
<th>Class</th>
<th>Big-Oh</th>
<th>If you double (N), ...</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>(O(1))</td>
<td>unchanged</td>
<td>10ms</td>
</tr>
<tr>
<td>logarithmic</td>
<td>(O(\log_2 N))</td>
<td>increases slightly</td>
<td>175ms</td>
</tr>
<tr>
<td>linear</td>
<td>(O(N))</td>
<td>doubles</td>
<td>3.2 sec</td>
</tr>
<tr>
<td>log-linear</td>
<td>(O(N \log_2 N))</td>
<td>slightly more than doubles</td>
<td>6 sec</td>
</tr>
<tr>
<td>quadratic</td>
<td>(O(N^2))</td>
<td>quadruples</td>
<td>1 min 42 sec</td>
</tr>
<tr>
<td>cubic</td>
<td>(O(N^3))</td>
<td>multiplies by 8</td>
<td>55 min</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>exponential</td>
<td>(O(2^N))</td>
<td>multiplies drastically</td>
<td>(5 \times 10^{61}) years</td>
</tr>
</tbody>
</table>
Complexity cases

- **Worst-case complexity**: “most challenging” input of size n

- **Best-case complexity**: “easiest” input of size n

- **Average-case complexity**: random inputs of size n

- **Amortized complexity**: m “most challenging” consecutive inputs of size n, divided by m
Bounds vs. Cases

Two orthogonal axes:

- **Bound**
 - Upper bound (O)
 - Lower bound (Ω)
 - Asymptotically tight (Θ)
- **Analysis Case**
 - Worst Case (Adversary), $T_{\text{worst}}(n)$
 - Average Case, $T_{\text{avg}}(n)$
 - Best Case, $T_{\text{best}}(n)$
 - Amortized, $T_{\text{amort}}(n)$

One can estimate the bounds for any given case.
Example

`List.contains(Object o)`

- **returns** `true` if the list contains `o`; `false` otherwise
- Input size: `n` (the length of the `List`)
- `f(n) = “running time for size n”`
- But `f(n)` needs clarification:
 - Worst case `f(n)`: it runs in at most `f(n)` time
 - Best case `f(n)`: it takes at least `f(n)` time
 - Average case `f(n)`: average time
Recursive programming

• A method in Java can call itself; if written that way, it is called a recursive method

• The code of a recursive method should be written to handle the problem in one of two ways:
 – base case: a simple case of the problem that can be answered directly; does not use recursion.
 – recursive case: a more complicated case of the problem, that isn't easy to answer directly, but can be expressed elegantly with recursion; makes a recursive call to help compute the overall answer
Recursive power function

• Defining powers recursively:

\[
pow(x, 0) = 1 \\
pow(x, y) = x \times pow(x, y-1), \quad y > 0
\]

// recursive implementation
public static int pow(int x, int y) {
 if (y == 0) {
 return 1;
 } else {
 return x * pow(x, y - 1);
 }
}