CSE 373
Autumn 2011

Looking Forward,
Looking Back

Today’s Outline

• Announcements
 – Final Exam – next Tues Dec 13th, 2:30-4:20
 – Office Hours Next week:
 • Mon 12/12 12-1pm, Ruth, CSE 360
 • Mon 12/13 1-2pm, Svet, CSE 220
 • Tues12/13 12-1:30pm, Ruth, CSE 360

• Review/Overview
• Course Evaluations

Final Exam

• Final Exam, Tuesday, Dec 13th, 2011
• 2:30 - 4:20pm in our regular lecture room
• Exam policies
 – The exam begins promptly at 2:30pm and ends at 4:20pm.
• The Final exam is cumulative, although more weight will be given to topics covered since the second midterm.

Overview and Goals
(From first day handout)
Achieve an understanding of fundamental data structures and algorithms and the tradeoffs between different implementations of these abstractions. Theoretical analysis, implementation, and application. Lists, stacks, queues, heaps, dictionaries, maps, hashing, trees and balanced trees, sets, and graphs. Searching and sorting algorithms.

Midterm #1

– Stacks and Queues, array and list implementations.
– Asymptotic analysis, Big-O. Worst case, upper bound, lower bound, analyzing loops, recurrences, amortized complexity.
– Trees – definitions
– Dictionary ADT
– Binary search trees – Inorder, preorder, postorder traversals, insert, delete, find.
– AVL trees - Single and double rotations, insert, find.

Midterm #2

– Binary Heaps - Findmin, Deletemin, Insert. Additional operations of increase, decrease, buildheap.
– D-heaps - Findmin, Deletemin, Insert. Additional operations of increase, decrease, buildheap.
– Disjoint Union/Find. Up-trees. Weighted union (union by size) and path compression.
Since Midterm #2
- Graphs. Directed and undirected. Adjacency list and adjacency matrix representations.
 • Topological sorting.
 • Graph searching. Depth-first, breadth-first search.
 • Shortest path: Dijkstra's algorithm, Greedy Algorithms.
 • Minimum spanning tree. Prim's and Kruskal's algorithms.
- Parallelism

Concepts
- ADT – what it is, why we have them, how to compare implementations
- Comparisons – Running time, Space, Big-O, Data Locality
- Tradeoffs – Pointers vs. Arrays, Space vs. Time
- Algorithm Design – Iteration, Recursion, Greedy Algorithms, Divide and Conquer

Skills
- Use Big-O to help you select the best data structure
- Time your code
- Java programming

Programming Projects
- Implement Stack using Linked list & array
- Implement Heaps (2,3, other heap)
- Solve Problems using data structures:
 - Maze Generation (Disjoint Sets)
 - Dijkstra's for shortest path (Graphs + Dictionary + Heap + ??), using Java Collections

More Computer Science Courses!!
- CSE 374 Intermediate Programming Concepts & Tools (12wi)
- CSE 410 Computer Systems (12sp) (Operating Systems & Architecture)
- CSE 413 Programming Languages and their Implementation
- CSE 415 Artificial Intelligence (autumn)
- CSE 417 Algorithms and Complexity (12wi)

Thanks!