Beyond Comparison Sorting

CSE 373
Data Structures & Algorithms
Ruth Anderson

Today's Outline

• Admin:
 – HW #5 – Graphs, due Thurs Dec 1 at 11pm
• Sorting
 – Comparison Sorting
 – Beyond Comparison Sorting

The Big Picture

Simple algorithms: \(O(n^2) \)
Fancier algorithms: \(O(n \log n) \)
Comparison lower bound: \(\Omega(n \log n) \)
Specialized algorithms: \(O(n) \)
Handling huge data sets

How fast can we sort?

• Heapsort & mergesort have \(O(n \log n) \) worst-case running time
• Quicksort has \(O(n \log n) \) average-case running times
• These bounds are all tight, actually \(\Theta(n \log n) \)
• So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as \(O(n) \) or \(O(n \log \log n) \)
 – Instead: prove that this is impossible
 • Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

A Different View of Sorting

• Assume we have \(n \) elements to sort
 – And for simplicity, none are equal (no duplicates)
• How many permutations (possible orderings) of the elements?
• Example, \(n=3 \),
• In general, \(n \) choices for least element, then \(n-1 \) for next, then \(n-2 \) for next, ...
 – \(n(n-1)(n-2)...(2)(1) = n! \) possible orderings

A Different View of Sorting

• Assume we have \(n \) elements to sort
 – And for simplicity, none are equal (no duplicates)
• How many permutations (possible orderings) of the elements?
• Example, \(n=3 \), six possibilities
• In general, \(n \) choices for least element, then \(n-1 \) for next, then \(n-2 \) for next, ...
 – \(n(n-1)(n-2)...(2)(1) = n! \) possible orderings
Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to “find” the right answer among the n! possible answers
 - Starts “knowing nothing”, “anything is possible”
 - Gains information with each comparison, eliminating some possibilities
- Intuition: At best, each comparison can eliminate half of the remaining possibilities
 - In the end narrows down to a single possibility

Representing the Sort Problem

- Can represent this sorting process as a decision tree:
 - Nodes are sets of “remaining possibilities”
 - At root, anything is possible; no option eliminated
 - Edges represent comparisons made, and the node resulting from a comparison contains only consistent possibilities
- Ex: Say we need to know whether a<b or b<a; our root for n=2
 - A comparison between a & b will lead to a node that contains only one possibility (either a<b or b<a)

Note: This tree is not a data structure; it's what our proof uses to represent “the most any algorithm could know”

Decision tree for n=3

The leaves contain all the possible orderings of a, b, c

What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
 - Perform only comparisons between 2 elements; binary result
 - Ex: Is a<b? Yes or no?
 - We assume no duplicate elements
 - Assume algorithm doesn’t ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a leaf (no more questions to ask)
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
 - So no algorithm can have worst-case running time better than the height of the decision tree

Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with n! leaves
 - Turns out average-case is same asymptotically
 - Fine, how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n! leaves has height Ω(n log n)
 - That is, n log n is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won’t be faster)
 - Factorial function grows very quickly

Then we’ll conclude that: (Comparison) Sorting is Ω(n log n)
 - This is an amazing computer-science result: proves all the clever programming in the world can’t sort in linear time!
Lower bound on Height

- A binary tree of height \(h \) has at most how many leaves?
 \[L \leq \quad \]
- A binary tree with \(L \) leaves has height at least:
 \[h \geq \quad \]
- The decision tree has how many leaves: _______
- So the decision tree has height:
 \[h \geq \quad \]

\[\log_2 L \]

The Big Picture

Simple algorithms: \(O(n^2) \)
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: \(O(n \log n) \)
- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: \(\Omega(n \log n) \)

Specialized algorithms: \(O(n) \)
- Bucket sort
- Radix sort

Handling huge data sets

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and \(K \) (or any small range),
 - Create an array of size \(K \) and put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, don’t even need to store anything more than a count of how many times that bucket has been used
- Output result via linear pass through array of buckets

Example:
- \(K = 5 \)
- Input: \((5,1,3,4,3,2,1,1,5,4,5) \)
- Output:

```
  count array
  1 3
  2 1
  3 2
  4 2
  5 3
```

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and \(K \) (or any small range),
 - Create an array of size \(K \) and put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, don’t even need to store anything more than a count of how many times that bucket has been used
- Output result via linear pass through array of buckets

Example:
- \(K = 5 \)
- Input: \((5,1,3,4,3,2,1,1,5,4,5) \)
- Output: \((1,1,1,2,3,3,4,4,5,5,5) \)

What is the running time?
Analyzing bucket sort

- Overall: $O(n + K)$
 - Linear in n, but also linear in K
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when range, K, is smaller (or not much larger) than number of elements, n
 - We don't spend time doing lots of comparisons of duplicates!
- Bad when K is much larger than n
 - Wasted space; wasted time during final linear $O(K)$ pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren’t just #'s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end in $O(1)$ (say, keep a pointer to last element)

Radix sort

- Radix = “the base of a number system”
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
 - After k passes, the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example

Radix sort

- Radix = 10
- Input: 478, 537, 9, 721, 3, 38, 143, 67
- First pass:
 - 1. bucket sort by ones digit
 - 2. Iterate thru and collect into a list
 - List is sorted by first digit.
 - Order now: 721, 3, 143, 38, 143, 67, 478, 9
- Second pass:
 - stable bucket sort by tens digit
 - Order now: 721, 537, 143, 67, 478, 38, 9
- Third pass:
 - stable bucket sort by 100s digit
 - Order now: 721, 537, 143, 67, 478, 38, 9
- Only 3 digits: We’re done!
Analysis of Radix Sort

Performance depends on:
- Input size: \(n \)
- Number of buckets = Radix: \(B \)
 - Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = "Digits": \(P \)
 - Ages of people: 3; Phone #: 10; Person’s name: ?
- Work per pass is 1 bucket sort: \(\mathcal{O}(B+n) \)
 - Each pass is a Bucket Sort
- Total work is \(\mathcal{O}(P(B+n)) \)
 - We do \(P \) passes, each of which is a Bucket Sort

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not
- Example: Strings of English letters up to length 15
 - Approximate run-time: \(15(52 + n) \)
 - This is less than \(n \log n \) only if \(n > 33,000 \)
 - Of course, cross-over point depends on constant factors of the implementations plus \(P \) and \(B \)
 - And radix sort can have poor locality properties
 - Not really practical for many classes of keys
 - Strings: Lots of buckets

Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- Mergesort is the basis of massive sorting
- In-memory sorting of reasonable blocks can be combined with larger mergesorts
- Mergesort can leverage multiple disks

External Sorting

- For sorting massive data
- Need sorting algorithms that minimize disk/tape access time
- **External sorting** – Basic Idea:
 - Load chunk of data into Memory, sort, store this “run” on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples
Features of Sorting Algorithms

In-place
- Sorted items occupy the same space as the original items.
 (No copying required, only $O(1)$ extra space if any.)

Stable
- Items in input with the same value end up in the same order as when they began.

Examples:
- Merge Sort - not in place, stable
- Quick Sort - in place, not stable

Last word on sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - heap sort, in-place but not stable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and $O(n^2)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies
- $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small maximum key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!