Graphs: Shortest Paths
(Chapter 9)
CSE 373
Data Structures and Algorithms

Today's Outline
- Admin:
 - Midterm #2 – Friday Nov 18th, topic list has been posted
 - HW #5 – Graphs, partners allowed, due after Thanksgiving
- Graphs
 - Graph Traversals
 - Shortest Paths

Single source shortest paths
- Done: BFS to find the minimum path length from \(v \) to \(u \) in \(O(|E|+|V|) \)
- Actually, can find the minimum path length from \(v \) to every node
 - Still \(O(|E|+|V|) \)
 - No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs
 Given a weighted graph and node \(v \), find the minimum-cost path from \(v \) to every node
 - As before, asymptotically no harder than for one destination
 - Unlike before, BFS will not work

Applications
- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management
 (see textbook)
 - …

Not as easy

Why BFS won't work: Shortest path may not have the fewest edges
 - Annoying when this happens with costs of flights

We will assume there are no negative weights
- Problem is ill-defined if there are negative-cost cycles
- Next algorithm we will learn is wrong if edges can be negative

Edsger Wybe Dijkstra
(1930-2002)
- Legendary figure in computer science; was a professor at University of Texas.
- Invented concepts of structured programming, synchronization, and "semaphores" for controlling computer processes.
- Supported teaching programming without computers (pencil and paper)
- 1972 Turing Award
- "computer science is no more about computers than astronomy is about telescopes"
Dijkstra’s Algorithm

The idea: reminiscent of BFS, but adapted to handle weights
• A priority queue will prove useful for efficiency (later)
• Will grow the set of nodes whose shortest distance has been computed
• Nodes not in the set will have a “best distance so far”

Dijkstra’s Algorithm: Idea

• Initially, start node (A in this case) has “cost” 0 and all other nodes have “cost” ∞
• At each step:
 – Pick closest unknown vertex v
 – Add it to the “cloud” of known vertices
 – Update “costs” for nodes with edges from v
• That’s it! (Have to prove it produces correct answers)

The Algorithm

1. For each node v, set v.cost = ∞ and v.known = false
2. Set source.cost = 0
3. While there are unknown nodes in the graph
 a) Select the unknown node v with lowest cost
 b) Mark v as known
 c) For each edge (v,u) with weight w,
 c1 = v.cost + w // cost of best path through v to u
 c2 = u.cost // cost of best path to u previously known
 if(c1 < c2) { // if the path through v is better
 u.cost = c1
 u.path = v // for computing actual paths
 }

Important features

• Once a vertex is marked known, the cost of the shortest path to that node is known
 – As is the path itself

• While a vertex is still not known, another shorter path to it might still be found

Example #1

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Important features

- Once a vertex is marked ‘known’, the cost of the shortest path to that node is known
 - As is the path itself

- While a vertex is still not known, another shorter path to it might still be found

Interpreting the results

- Now that we’re done, how do we get the path from, say, A to E?

Stopping Short

- How would this have worked differently if we were only interested in the path from A to G?
 - A to E?

Example #2

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F
Example #2

Table 1: Vertex Known, Cost, Path

<table>
<thead>
<tr>
<th></th>
<th>Known?</th>
<th>Cost</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>≤ 1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Vertex Known, Cost, Path

<table>
<thead>
<tr>
<th></th>
<th>Known?</th>
<th>Cost</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>≤ 1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Example #2

Table 3: Vertex Known, Cost, Path

<table>
<thead>
<tr>
<th></th>
<th>Known?</th>
<th>Cost</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>≤ 1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Example #2

Table 4: Vertex Known, Cost, Path

<table>
<thead>
<tr>
<th></th>
<th>Known?</th>
<th>Cost</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≥ 3</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>≤ 1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>≤ 4</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Example #2

Table 5: Vertex Known, Cost, Path

<table>
<thead>
<tr>
<th></th>
<th>Known?</th>
<th>Cost</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≥ 3</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>≤ 1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>≤ 4</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Example #2

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>6</td>
<td>D</td>
</tr>
</tbody>
</table>

Example #3

How will the best-cost-so-far for Y proceed?

Is this expensive?

No, each edge is processed only once

A Greedy Algorithm

- Dijkstra’s algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
 - An example of a greedy algorithm:
 - at each step, irrevocably does what seems best at that step (once a vertex is in the known set, does not go back and readjust its decision)
 - Locally optimal – does not always mean globally optimal

Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node “known”, then by induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t discover a shorter path later!

- This holds only because Dijkstra’s algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction…

Where are we?

- Have described Dijkstra’s algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!
Correctness: The Cloud (Rough Idea)

- The best known path to v must have only nodes in-the-cloud
 - Since we've selected it, and we only know about paths through the cloud to a node right outside the cloud
- Assume the actual shortest path to v is different
 - It won't use only cloud nodes, (we would know about it), so it must use non-cloud nodes
 - Let w be the first non-cloud node on this path.
 - The part of the path up to w is already known and must be shorter than the best-known path to v. So v could not have been picked. Contradiction.

Efficiency, first approach

- Notice each edge is processed only once

Efficiency, second approach

- Use pseudocode to determine asymptotic run-time

Improving asymptotic running time

- So far: O(V^3)
 - We had a similar "problem" with topological sort being O(V^3)
 - Due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
 - Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support decreaseKey operation
 - Must maintain a reference from each node to its position in the priority queue
 - Conceptually simple, but can be a pain to code up
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```plaintext
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while(heap is not empty) {
        b = deleteMin()
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    decreaseKey(a, "new cost – old cost")
                    a.path = b
                }
    }
}
```

- $O(|V|)$
- $O(|V|\log|V|)$
- $O(|E|\log|V|)$
- $O(|V|\log|V|+|E|\log|V|)$

Dense vs. sparse again

- First approach: $O(|V|^2)$
- Second approach: $O(|V|\log|V|+|E|\log|V|)$
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if $|E| > |V|$, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for "normal graphs", we might call `decreaseKey` rarely (or not percolate far), making $|E|\log|V|$ more like $|E|$