Today’s Outline

- Admin:
 - HW #4 due Thursday, Nov 10 at 11pm
- Graphs:
 - Representations
 - Topological Sort
 - Graph Traversals

Graphs:
Topological Sort / Graph Traversals (Chapter 9)

CSE 373
Data Structures and Algorithms

Topological Sort

Problem: Given a DAG $G = (V, E)$, output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

Example output:

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

Questions and comments

- Why do we perform topological sorts only on DAGs?
- Is there always a unique answer?
- What DAGs have exactly 1 answer?
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Uses

- Figuring out how to graduate
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution

A first algorithm for topological sort

1. Label each vertex with its in-degree
 - Labeling also called marking
 - Think “write in a field in the vertex”, though you could also do this with a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and “remove it” (conceptually) from the graph
 c) For each vertex \(u \) adjacent to \(v \) (i.e. \(u \) such that \((v,u)\) in \(E \)), decrement the in-degree of \(u \)

Example

Output: 126

Example

Output: 126

Example

Output: 126

Example

Output: 126
A couple of things to note

- Needed a vertex with in-degree of 0 to start
 - No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
 - Potentially many different correct orders

Running time?

```java
labelEachVertexWithItsInDegree();
for (ctr = 0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

- What is the worst-case running time?
 - Initialization $O(|V| + |E|)$
 - Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
 - Sum of all decrements $O(|E|)$ (assuming adjacency list)
 - So total is $O(|V|^2 + |E|)$ – not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!
- Keep the "pending" zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:
1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) v = dequeue()
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that $(v, u) \in E$), decrement the in-degree of u. If new degree is 0, enqueue it

Running time?

```java
labelAllAndEnqueueZeros();
for (ctr = 0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v
        if (w.indegree == 0) enqueue(w);
}
```
Running time?

```java
labelAllAndEnqueueZeros()
for(ctr=0; ctr < numVertices; ctr++)
{
  v = dequeue()
  put v next in output
  for each w adjacent to v {
    w.indegree--;
    if(w.indegree==0) enqueue(w);
  }
}
```

- What is the worst-case running time?
 - Initialization: \(O(|V| + |E|)\)
 - Sum of all enqueues and dequeues: \(O(|V|)\)
 - Sum of all decrements: \(O(|E|)\) (assuming adjacency list)
 - So total is \(O(|E| + |V|)\) – much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node \(v\), find all nodes reachable (i.e., there exists a path) from \(v\):
- Possibly “do something” for each node (an iterator!)
 - E.g. Print to output, set some field, etc.

Related:
- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting node

Basic idea:
- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract idea

```java
traverseGraph(Node start) {
  Set pending = emptySet();
pending.add(start)
  mark start as visited
  while(pending is not empty) {
    next = pending.remove()
    for each node u adjacent to next
    if(u is not marked) {
      mark u
      pending.add(u)
    }
  }
}
```

Running time and options

- Assuming add and remove are \(O(1)\), entire traversal is \(O(|E|)\)
- The order we traverse depends entirely on add and remove
 - Popular choice: a stack “depth-first graph search” “DFS”
 - Popular choice: a queue “breadth-first graph search” “BFS”
- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first

Recursive DFS, Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
  mark and “process” (e.g. print) start
  for each node u adjacent to start
  if u is not marked {
    DFS(u)
  }
}
```

- Order processed: A, B, D, E, C, F, G, H
- Exactly what we called a ‘pre-order traversal’ for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

DFS with a stack, Example: trees

```
DFS2(Node start) {
  initialize stack s to hold start
  mark start as visited
  while(s is not empty) {
    next = s.pop() // and “process”
    for each node u adjacent to next
    if(u is not marked) {
      mark u and push onto s
    }
  }
}
```

- Order processed: A, C, F, H, G, B, E, D
- A different but perfectly fine traversal
BFS with a queue, Example: trees

```java
BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while (q is not empty) {
        next = q.dequeue() // and "process"
        for each node u adjacent to next
            if (u is not marked)
                mark u and enqueue onto q
    }
}
```

- Order processed: A, B, C, D, E, F, G, H
- A “level-order” traversal

Saving the path

- Our graph traversals can answer the reachability question:
 - “Is there a path from node x to node y?”
- But what if we want to actually output the path?
 - Like getting driving directions rather than just knowing it’s possible to get there!
- Easy:
 - Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 - When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler
- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Comparison

- Breadth-first always finds shortest paths – “optimal solutions”
 - Better for “what is the shortest path from x to y”
- But depth-first can use less space in finding a path
 - If longest path in the graph is p and highest out-degree is d
 then DFS stack never has more than d*p elements
 - But a queue for BFS may hold O(|V|) nodes