Graphs: Definitions and Representations (Chapter 9)

CSE 373
Data Structures and Algorithms

Today’s Outline

• Admin:
 – HW #4 due Thursday, Nov 10 at 11pm
• Memory hierarchy
• Graphs
 – Representations

Graphs

• A graph is a formalism for representing relationships among items
 – Very general definition because very general concept
• A graph is a pair
 \(G = (V, E) \)
 – A set of vertices, also known as nodes
 \(V = \{v_1, v_2, \ldots, v_n\} \)
 – A set of edges
 \(E = \{e_1, e_2, \ldots, e_m\} \)
 • Each edge \(e_i \) is a pair of vertices
 \((v_j, v_k)\)
 • An edge "connects" the vertices
• Graphs can be directed or undirected

An ADT?

• Can think of graphs as an ADT with operations like
 \(\text{isEdge}((v_j, v_k)) \)
• But what the "standard operations" are is unclear
• Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
• Many important problems can be solved by:
 1. Formulating them in terms of graphs
 2. Applying a standard graph algorithm
• To make the formulation easy and standard, we have a lot of standard terminology about graphs

Some graphs

For each, what are the vertices and what are the edges?

• Web pages with links
• Facebook friends
• "Input data" for the Kevin Bacon game
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
• …

Undirected Graphs

• In undirected graphs, edges have no specific direction
 – Edges are always "two-way"

 \(\{(A, B), (B, C), (C, D), (D, A)\} \)

 Thus, \((u, v) \in E\) implies \((v, u) \in E\).
 – Only one of these edges needs to be in the set; the other is implicit
• Degree of a vertex: number of edges containing that vertex
 – Put another way: the number of adjacent vertices
Directed graphs

- In directed graphs (sometimes called digraphs), edges have a specific direction:
 - Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).
 - Let \((u, v) \in E\) mean \(u \rightarrow v\) and call \(u\) the source and \(v\) the destination.
 - In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination.
 - Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source.

Self-edges, connectedness, etc.

- A self-edge a.k.a. a loop is an edge of the form \((u, u)\):
 - Depending on the use/algorithm, a graph may have:
 - No self edges.
 - Some self edges.
 - All self edges (in which case often implicit, but we will be explicit).
 - A node can have a degree / in-degree / out-degree of zero.
 - A graph does not have to be connected. (In an undirected graph, this means we can follow edges from any node to every other node, even if every node has non-zero degree.

More notation

For a graph \(G = (V, E)\):

- \(|V|\) is the number of vertices.
- \(|E|\) is the number of edges:
 - Minimum? is \(0\).
 - Maximum for undirected? is \(\binom{|V|}{2}\).
 - Maximum for directed? is \(|V|^2\). (assuming self-edges allowed, else subtract \(|V|\)).
- If \((u, v) \in E\):
 - Then \(v\) is a neighbor of \(u\), i.e., \(v\) is adjacent to \(u\).
 - Order matters for directed edges.

Examples again

Which would use directed edges? Which would have self-edges? Which could have 0-degree nodes?

- Web pages with links.
- Facebook friends.
- “Input data” for the Kevin Bacon game.
- Methods in a program that call each other.
- Road maps (e.g., Google maps).
- Airline routes.
- Family trees.
- Course pre-requisites.
- …

Weighted graphs

In a weighed graph, each edge has a weight a.k.a. cost:

- Typically numeric (most examples will use ints).
- Orthogonal to whether graph is directed.
- Some graphs allow negative weights; many don’t.

Examples

- Clinton
- Mukilteo
- Kingston
- Edmonds
- Bainbridge
- Seattle
- Bremerton
Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Paths and Cycles

- A **path** is a list of vertices \([v_0, v_1, \ldots, v_n]\) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Say "a path from \(v_0\) to \(v_n\)"

- A **cycle** is a path that begins and ends at the same node \((v_0 = v_n)\)

Example path (that also happens to be a cycle):

- Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle

Path Length and Cost

- **Path length**: Number of edges in a path (also called "unweighted cost")
- **Path cost**: sum of the weights of each edge

Example where:

\[
P = [\text{Seattle, Salt Lake City, Chicago, Dallas, San Francisco}]
\]

Simple paths and cycles

- A **simple path** repeats no vertices, (except the first might be the last):
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 - [Seattle, Salt Lake City, San Francisco, Dallas, San Francisco, Seattle]

- Recall, a **cycle** is a path that ends where it begins:
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 - [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

- A **simple cycle** is a cycle and a simple path:
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths/cycles in directed graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?

Paths/cycles in directed graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No
Undirected graph connectivity

- An undirected graph is **connected** if for all pairs of vertices u, v, there exists a path from u to v.

- An undirected graph is **complete**, a.k.a. **fully connected** if for all pairs of vertices u, v, there exists an edge from u to v.

Directed graph connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex ignoring direction of edges.

- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex.

Examples

For undirected graphs:
- **Connected**?

For directed graphs:
- **Strongly connected**?
- **Weakly connected**?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Trees as graphs

When talking about graphs, we say a **tree** is a graph that is:
- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees.

How does this relate to the trees we know and love?...

Rooted Trees

- We are more accustomed to **rooted trees** where:
 - We identify a unique (“special”) root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges).

Rooted Trees (Another example)

- We are more accustomed to **rooted trees** where:
 - We identify a unique (“special”) root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges).
Directed acyclic graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- …

Density / sparsity

- Recall: In an undirected graph, $0 \leq |E| < |V|^2$
- Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
- So for any graph, $|E| \in \Theta(|V|^2)$
- One more fact: If an undirected graph is connected, then $|E| \geq |V| - 1$
- Because $|E|$ is often much smaller than its maximum size, we do not always approximate as $|E|$ as $\Theta(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., $|E| \in \Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means “lots of edges”
- If $|E|$ is $\Theta(|V|)$ we say the graph is sparse
 - More sloppily, sparse means “most (possible) edges missing”

What’s the data structure?

Things we might want to do:

- iterate over vertices
- iterate over edges
- iterate over vertices adj. to a vertex
- check whether an edge exists
- find the lowest-cost path from x to y

Which data structure is “best” can depend on:

- properties of the graph (e.g., dense versus sparse)
- the common queries (e.g., “Is (u,v) an edge?” versus “What are the neighbors of node u?”)

We need a data structure that represents graphs:

- List of vertices + list of edges (rarely good enough)
- Adjacency Matrix
- Adjacency List

Adjacency matrix

- Assign each node a number from 0 to $|V| - 1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v] = \text{true}$ means there is an edge from u to v

Adjacency matrix properties

- Running time:
 - Get a vertex’s out-edges:
 - Get a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- Space requirements:
 - Best for sparse or dense graphs?
Adjacency matrix properties

- **Running time to:**
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- **Space requirements:**
 - $|V|^2$ bits
- **Best for dense graphs**

Adjacency matrix properties (cont.)

- How will the adjacency matrix vary for an **undirected graph**?
 - Undirected: Will be symmetric about diagonal axis

- How can we adapt the representation for **weighted graphs**?
 - Instead of a boolean, store an int/double in each cell
 - Need some value to represent ‘not an edge’
 - Say -1 or 0

Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list (e.g., linked list) of all adjacent vertices

Adjacency List Properties

- **Running time to:**
 - Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex’s in-edges: $O(|E|)$ (but could keep a second adjacency list for this!)
 - Decide if some edge exists: $O(d)$ where d is out-degree of source
 - Insert an edge: $O(1)$
 - Delete an edge: $O(d)$ where d is out-degree of source

- **Space requirements:**
 - $O(|V| + |E|)$
- **Best for sparse graphs?** so usually just stick with linked lists

Adjacency matrices & adjacency lists both do fine for undirected graphs

- **Matrix:** Could save space; only ~1/2 the array is used
- **Lists:** Each edge in two lists to support efficient “get all neighbors”

Undirected graphs

Example:
Next...

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- **Shortest paths**: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path