Math Review

CSE 373
Data Structures & Algorithms
Ruth Anderson
Autumn 2011

Today’s Outline

• Announcements
 – Assignment #1 due Thurs, Oct 6 at 11pm
 – Midterm date? Please fill out poll by end of day today.

• Math Review
 – Proof by Induction
 – Powers of 2
 – Binary numbers
 – Exponents and Logs
 • Algorithm Analysis

When did you take cse 143?

<table>
<thead>
<tr>
<th>Numeric values</th>
<th>Answer</th>
<th>Frequency</th>
<th>Percenta ge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 - summer 11</td>
<td>6</td>
<td>6.52%</td>
</tr>
<tr>
<td>2</td>
<td>1 - spring 11</td>
<td>8</td>
<td>8.70%</td>
</tr>
<tr>
<td>3</td>
<td>2 - winter 11</td>
<td>21</td>
<td>22.83%</td>
</tr>
<tr>
<td>4</td>
<td>3 - autumn 10</td>
<td>13</td>
<td>14.13%</td>
</tr>
<tr>
<td>5</td>
<td>4 - summer 10</td>
<td>2</td>
<td>2.17%</td>
</tr>
<tr>
<td>6</td>
<td>5 - spring 10</td>
<td>16</td>
<td>17.39%</td>
</tr>
<tr>
<td>7</td>
<td>6 - before spring 10</td>
<td>19</td>
<td>20.65%</td>
</tr>
<tr>
<td>8</td>
<td>7 - I did not take CSE 143 at UW (AP or transfer credit)</td>
<td>5</td>
<td>5.43%</td>
</tr>
<tr>
<td>9</td>
<td>Other:</td>
<td>2</td>
<td>2.17%</td>
</tr>
<tr>
<td></td>
<td>Total responses (N): 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Did not respond: 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Homework 1 – Sound Blaster!

Play your favorite song in reverse!

Aim:
1. Implement stack ADT two different ways
2. Use to reverse a sound file

Due: Thurs, Oct 6, 2011
Submit via catalyst drop box before: 11pm

Mathematical Induction

Suppose we wish to prove that:
For all \(n \geq n_0 \), some predicate \(P(n) \) is true.

We can do this by proving two things:
1. \(P(n_0) \) - this is called the “base case” or “basis.”
2. If \(P(k) \), then \(P(k+1) \) - this is called the “induction step” or “inductive case”

Note: We prove 2. by assuming \(P(k) \) is true.
Putting these together, we show that \(P(n) \) is true.

Example

Prove: for all \(n \geq 1 \), sum of first \(n \) powers of 2 is \(2^n - 1 \)

\[
2^0 + 2^1 + 2^2 + \ldots + 2^{n-1} = 2^n - 1.
\]

in other words:

\[
1 + 2 + 4 + \ldots + 2^{n-1} = 2^n - 1.
\]
Example Proof by Induction

Theorem: \(P(n) \) holds for all \(n \geq 1 \)
Proof: By induction on \(n \)
- Base case, \(n=1 \):
 \[2^1 = 1 \]
- Induction step:
 - Inductive hypothesis: Assume the sum of the first \(k \) powers of 2 is \(2^k - 1 \)
 - Given the hypothesis, show that:
 - the sum of the first \(k+1 \) powers of 2 is \(2^{k+1} - 1 \)
 From our inductive hypothesis we know:
 \[
 1 + 2 + 4 + \ldots + 2^{k-1} = 2^k - 1
 \]
 Add the next power of 2 to both sides:
 \[
 1 + 2 + 4 + \ldots + 2^{k-1} + 2^k = 2^k + 1
 \]
 We have what we want on the left; massage the right a bit:
 \[
 1 + 2 + 4 + \ldots + 2^{k-1} + 2^k = 2(2^k - 1) + 1
 \]
 \[
 = 2^{k+1} - 1
 \]
Therefore if the equation is valid for \(n = k \), it must also be valid for \(n = k+1 \).

Summary: Our theorem is valid for \(n=1 \) (base case) and by the induction step it is therefore valid for \(n=2, n=3, \ldots \)
Thus, it is valid for all integers greater than or equal to 1.

Powers of 2
- Many of the numbers we use in Computer Science are powers of 2
- Binary numbers (base 2) are easily represented in digital computers
 - each "bit" is a 0 or a 1
 - an \(n \)-bit wide field can represent how many different things?

\[
\begin{array}{c|c|c}
\text{# Bits} & \text{Patterns} & \text{# of patterns} \\
\hline
1 & 000000000101011 & \\
2 & & \\
\end{array}
\]

Unsigned binary numbers
- For \textit{unsigned} numbers in a fixed width field
 - the minimum value is 0
 - the maximum value is \(2^n - 1 \), where \(n \) is the number of bits in the field
 - The value is \(\sum_{i=0}^{n-1} a_i \cdot 2^i \)
- Each bit position represents a power of 2 with \(a_i = 0 \) or \(a_i = 1 \)

\[
\begin{array}{c|c|c}
\text{Java:} & & \\
\text{an \textit{int} is 32 bits and signed, so “max int” is “about 2 billion”} & & \\
\text{a \textit{long} is 64 bits and signed, so “max long” is 2^{64}-1} & & \\
\end{array}
\]

Powers of 2
- A bit is 0 or 1
- A sequence of \(n \) bits can represent \(2^n \) distinct things
 - For example, the numbers 0 through \(2^n - 1 \)
 - \(2^{10} \) is 1024 ("about a thousand", kilo in CSE speak)
 - \(2^{20} \) is "about a million", mega in CSE speak
 - \(2^{30} \) is "about a billion", giga in CSE speak

\[
\begin{array}{c|c|c}
\text{Java:} & & \\
\text{an \textit{int} is 32 bits and signed, so “max int” is “about 2 billion”} & & \\
\text{a \textit{long} is 64 bits and signed, so “max long” is 2^{64}-1} & & \\
\end{array}
\]
Logarithms and Exponents

- Definition: $\log_2 x = y$ if and only if $x = 2^y$
 - $8 = 2^3$, so $\log_2 8 = 3$
 - $65536 = 2^{16}$, so $\log_2 65536 = 16$
- Notice that $\log_n n$ tells you how many bits are needed to distinguish among n different values.
 - 8 bits can hold any of 256 numbers, for example: 0 to $2^8 - 1$, which is 0 to 255
 - $\log_2 256 = 8$

Therefore...

- Could give a unique id to...
 - Every person in the U.S. with 29 bits
 - Every person in the world with 33 bits
 - Every person to have ever lived with 38 bits (estimate)
 - Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Signed Numbers?

- Since so much is binary in CS, \log almost always means \log_2
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, $\log_2 1,000,000 = \text{“a little under 20”}$
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!

Logarithms and Exponents

- Since so much is binary in CS, \log almost always means \log_2
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, $\log_2 1,000,000 = \text{“a little under 20”}$
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Logarithms and Exponents

One function that grows very quickly, One that grows very slowly

Floor and Ceiling

Facts about Floor and Ceiling

Properties of logs
Other log properties

- \(\log A/B = \log A - \log B \)
- \(\log (A^B) = B \log A \)
- \(\log \log X \leq \log X \leq X \) for all \(X > 0 \)
 - \(\log \log X = Y \) means:
 - \(\log x \) grows more slowly than \(x \)
 - called a “sub-linear” function
 - \((\log x)/(\log x) \) is written \(\log^2 x \) (aka “log-squared”)
 - Note: \(\log \log X \neq \log^2 X \)

A log is a log is a log

- “Any base B log is equivalent to base 2 log within a constant factor.”

Log base doesn’t matter (much)

“Any base \(B \) log is equivalent to base 2 log within a constant factor”
- And we are about to stop worrying about constant factors!
- In particular, \(\log_2 x = 3.22 \log_10 x \)
- In general, we can convert log bases via a constant multiplier
- To convert from base \(B \) to base \(A \):
 \[
 \log_A x = \left(\frac{\log_B x}{\log_B A} \right)
 \]

Arithmetic Sequences

- \(N = \{0, 1, 2, \ldots \} \) = natural numbers
- \(\{0, 1, 2, \ldots \} \) is an infinite arithmetic sequence
- \(\{a, a+d, a+2d, \ldots \} \) is a general infinite arith. sequence.

There is a constant difference between terms.

\[
1+2+3+\ldots+N=\sum_{i=1}^{N}i = \frac{N(N+1)}{2}
\]

Algorithm Analysis Examples

- Consider the following program segment:

  ```
  x:= 0;
  for i = 1 to N do
    for j = 1 to i do
      x := x + 1;
  ```

 What is the value of \(x \) at the end?

Analyzing the Loop

- Total number of times \(x \) is incremented is executed =

 \[
 1+2+3+\ldots+N=\sum_{i=1}^{N}i = \frac{N(N+1)}{2}
 \]

- Congratulations - You’ve just analyzed your first program!
 - Running time of the program is proportional to \(N(N+1)/2 \) for all \(N \)
 - Big-O ??