Today's Outline

- Introductions
- Administrative Info
- What is this course about?
- Review: Stacks and Queues

Introduction

CSE 373
Data Structures & Algorithms
Ruth Anderson
Autumn 2011

Today's Outline

- Introductions
- Administrative Info
- What is this course about?
- Review: Stacks and Queues

Staff

- Instructor
 - Ruth Anderson, (rea at cs.washington.edu)
- TA’s
 - Svetoslav Kolev, (swetko at cs.washington.edu)
 - Daryl Hansen, (darylh at cs.washington.edu)
 - Nathan Armstrong, (armstnp at cs.washington.edu)

Me (Ruth Anderson)

- Grad Student at UW in Programming Languages, Compilers, Parallel Computing
- Taught Computer Science at the University of Virginia for 5 years
- Grad Student at UW: PhD in Educational Technology, Pen Computing
- Current Research: Computing and the Developing World
- Recently Taught: majors and non-majors data structures, architecture, compilers, programming languages, cse143, Designing Technology for Resource-Constrained Environments

Web Page

- All info is on the web page for CSE 373
 - http://www.cs.washington.edu/373
- also known as
 - http://www.cs.washington.edu/education/courses/373/11au
- Look there for schedules, contact information, assignments, links to discussion boards and mailing lists, etc.

Office Hours

- Ruth Anderson– 360 CSE (Allen Center)
 - Monday 3:30-4:30pm,
 - Thursday 11am-12pm
 - or by appointment
CSE 373 E-mail List

- If you are registered for the course, you will be automatically subscribed.
- The E-mail list is used for posting announcements by instructor and TAs.
- You are responsible for anything sent here.

CSE 373 Discussion Board

- The course will have a Catalyst Go-Post message board
- Use for:
 - General discussion of class contents
 - Hints and ideas about assignments (but not detailed code or solutions)
 - Other topics related to the course.

Computer Lab for homework and Help sessions

- College of Arts & Sciences Instructional Computing Lab
- We’ll be using Java for the programming assignments.
- Eclipse is recommended programming environment.

Textbook

Grading

Estimated Breakdown:

- Assignments 50%
 - Weights may differ to account for relative difficulty of assignments
 - Assignments will be a mix of shorter written exercises and longer programming projects
- Midterms 30% (Two, 15% each)
- Final Exam 20%
 - 2:30-4:20pm Tuesday, December 13, 2011.

Deadlines & Late Policy

- Assignments generally due Thursday evenings via the web
 - Exact times and dates will be given for each assignment
- Late policy: 20% off per 24hrs late
 - Note: ALL parts of the assignment must be received by that time (may require you to make an electronic version of written assignments).
 - (Talk to the instructor if something truly outside your control causes problems here)
Academic (Mis-)Conduct

- You are expected to do your own work
 › Exceptions (group work), if any, will be clearly announced
- Sharing solutions, doing work for or accepting work from others will be penalized
- Referring to solutions from this or other courses from previous quarters is cheating.
- Integrity is a fundamental principle in the academic world (and elsewhere) – we and your classmates trust you; don’t abuse that trust

Policy on collaboration

- “Gilligan’s Island” rule:
 › You may discuss problems with your classmates to your heart's content.
 › After you have solved a problem, discard all written notes about the solution.
 › Go watch TV for a ½ hour (or more). Preferably Gilligan’s Island.
 › Then write your solution.

Homework for Today!!

0) Review Java & Explore Eclipse
1) Assignment #1: (posted soon)
2) Preliminary Survey: fill out by evening of Thursday Sept 29th
3) Information Sheet: bring to lecture on Friday Sept 30th
4) Reading in Weiss (see next slide)

Reading

- Reading in *Data Structures and Algorithm Analysis in Java*, by Weiss
- For this week:
 › Chapter 1 – (review) Mathematics and Java
 › Chapter 3 – (Assign #1) Lists, Stacks, & Queues
 › Chapter 2 – (Topic for Friday) Algorithm Analysis

Bring to Class on Friday:

- Name
- Email address
- Year (1,2,3,4)
- Major
- Hometown
- Interesting Fact or what I did over summer break.

Today’s Outline

- Introductions
- Administrative Info
- What is this course about?
- Review: Stacks and Queues
Class Overview

- Introduction to many of the basic data structures used in computer software
 - Understand the data structures
 - Analyze the algorithms that use them
 - Know when to apply them
- Practice design and analysis of data structures.
- Practice using these data structures by writing programs.
- Data structures are the plumbing and wiring of programs.

Goal

- You will understand
 - what the tools are for storing and processing common data types
 - which tools are appropriate for which need
- So that you will be able to
 - make good design choices as a developer, project manager, or system customer

Data Structures

"Clever" ways to organize information in order to enable efficient computation.

Course Topics

- Introduction to Algorithm Analysis
- Lists, Stacks, Queues
- Trees, Hashing, Dictionaries
- Heaps, Priority Queues
- Sorting
- Disjoint Sets
- Graph Algorithms

Background

- Prerequisite is CSE 143
- Topics you should have a basic understanding of:
 - Variables, conditionals, loops, methods (functions), fundamentals of defining classes and inheritance, arrays, single linked lists, simple binary trees, recursion, some sorting and searching algorithms, basic algorithm analysis (e.g., $O(n)$ vs $O(n^2)$ and similar things)
 - We can fill in gaps as needed, but if any topics are new, plan on some extra studying

Data Structures: What?

- Need to organize program data according to problem being solved
- Abstract Data Type (ADT) - A data object and a set of operations for manipulating it
 - List ADT with operations insert and delete
 - Stack ADT with operations push and pop
- Note similarity to Java classes
 - private data structure and public methods
Data Structures: Why?

- Program design depends crucially on how data is structured for use by the program
 - Implementation of some operations may become easier or harder
 - Speed of program may dramatically decrease or increase
 - Memory used may increase or decrease
 - Debugging may become easier or harder

Picking the best Data Structure for the job

- The data structure you pick needs to support the operations you need
- Ideally it supports the operations you will use most often in an efficient manner
- Examples of operations:
 - List ADT with operations `insert` and `delete`
 - Stack ADT with operations `push` and `pop`

Terminology

- Abstract Data Type (ADT)
 - Mathematical description of an object with set of operations on the object. Useful building block.
- Algorithm
 - A high level, language independent, description of a step-by-step process
- Data structure
 - A specific organization of data and family of algorithms for implementing an abstract data type.
- Implementation of data structure
 - A specific implementation in a specific language

Terminology examples

- A stack is an abstract data type supporting push, pop and `isEmpty` operations
- A stack data structure could use an array, a linked list, or anything that can hold data
- One stack implementation is found in `java.util.Stack`

Homework for Today!!

0) Review Java & Explore Eclipse
1) Assignment #1: (posted soon)
2) Preliminary Survey: fill out by evening of Thursday Sept 29th
3) Information Sheet: bring to lecture on Friday Sept 30th
4) Reading in Weiss (see next slide)