Extra AVL Tree Slides

General Single Rotation
- Height of subtree same as it was before insert!
- Height of all ancestors unchanged.

Insert into Z, increasing height

General Double Rotation
- Height of subtree still the same as it was before insert!
- Height of all ancestors unchanged.

Height of an AVL tree

Theorem: Any AVL tree with \(n \) nodes has height less than 1.441 \(\log n \).

Proof: Given an \(n \)-node AVL tree, we want to find an upper bound on the height of the tree.

Fix \(h \). What is the smallest \(n \) such that there is an AVL tree of height \(h \) with \(n \) nodes?

Let \(W_h \) be the set of all AVL trees of height \(h \) that have as few nodes as possible.

Let \(S(h) \) be the number of nodes in any one of these trees.

\[S(0) = 1, \quad S(1) = 2 \]

Suppose \(T \in W_h \), where \(h \geq 2 \). Let \(T_L \) and \(T_R \) be \(T \)'s left and right subtrees. Since \(T \) has height \(h \), either \(T_L \) or \(T_R \) has height \(h-1 \). Suppose it’s \(T_R \).

By definition, both \(T_L \) and \(T_R \) are AVL trees. In fact, \(T_R \in W_{h-1} \), or else it could be replaced by a smaller AVL tree of height \(h-1 \) to give an AVL tree of height \(h \) that is smaller than \(T \).

Similarly, \(T_L \in W_{h-2} \).

Therefore, \(S(h) = 1 + S(h-2) + S(h-1) \).

Claim: For \(h \geq 0 \), \(S(h) \geq \varphi^h \), where \(\varphi = (1 + \sqrt{5}) / 2 \approx 1.6 \).

Proof: The proof is by induction on \(h \).

Basis step: \(h = 0 \). \(S(0) = 1 = \varphi^0 \).

Induction step: Suppose the claim is true for \(0 \leq m \leq h \), where \(h \geq 1 \).
Then:
\[S(h+1) = 1 + S(h-1) + S(h) \]
\[\geq 1 + \varphi^{h-1} + \varphi^h \quad \text{(by the i.h.)} \]
\[= 1 + \varphi^{h-1} (1 + \varphi) \quad \text{(by math)} \]
\[= 1 + \varphi^{h+1} \quad \text{(using } 1+\varphi = \varphi^2 \text{)} \]
\[> \varphi^{h+1} \quad \text{Thus, the claim is true.} \]

From the claim, in an \(n \)-node AVL tree of height \(h \),
\[n \geq S(h) \geq \varphi^{h} \quad \text{(from the Claim)} \]
\[h \leq \log_{\varphi} n \quad \text{(by math – log of both sides)} \]
\[= (\log n) / (\log \varphi) \]
\[< 1.441 \log n \]

AVL tree: Running times

- **find** takes \(O(\log n) \) time, because height of the tree is always \(O(\log n) \).
- **insert**: \(O(\log n) \) time because we do a find \((O(\log n) \text{ time}) \), and then we may have to visit every node on the path back to the root, performing up to 2 single rotations \((O(1) \text{ time each}) \) to fix the tree.
- **remove**: \(O(\log n) \) time. Left as an exercise.

AVL Insert Algorithm

- **Recursive**
 1. Search downward for spot
 2. Insert node
 3. Unwind stack, correcting heights
 a. If imbalance \#1, single rotate
 b. If imbalance \#2, double rotate

- **Iterative**
 1. Search downward for spot, stacking parent nodes
 2. Insert node
 3. Unwind stack, correcting heights
 a. If imbalance \#1, single rotate and exit
 b. If imbalance \#2, double rotate and exit

Why use a stack?

Single Rotation Code

```cpp
void RotateRight(Node root) {
    Node temp = root.right
    root.right = temp.left
    temp.left = root
    root.height = max(root.right.height(), root.left.height()) + 1
    temp.height = max(temp.right.height(), temp.left.height()) + 1
    root = temp
}
```

Double Rotation Code

```cpp
void DoubleRotateRight(Node root) {
    RotateLeft(root.right)
    RotateRight(root)
}
```

Double Rotation Completed

- **First Rotation**
- **Second Rotation**