
CSE373 Midterm II
Fall 2009

(Closed book, closed notes)

Name: ..

Problem Points

Q1 [20 points]

Q2 [20 points]

Q3 [15 points]

Q4 [15 points]

Q5 [30 points]

Total [100 points]

1

1 [20 points] Heaps

1. Consider a binary heap with n = 2k − 1 elements, stored in an ar-
ray a[1], ..., a[n], using the implicit representation. The heap
supports the operations insert and deleteMin, that is, the smallest
element is a[1]. For each of the statements below indicate whether
they are true or false.

(a) The largest element in the heap is a[n].

True or False ?

(b) a[1]+a[2]+...+a[n/2] ≤ a[n/2+1]+a[n/2+2]+...+a[n]

True or False ?

(c) The median element in the heap is either a[n/2] or a[n/2+1].

True or False ?

(d) a[1] ≤ a[2] ≤ a[4] ≤ a[8] ≤ . . . ≤ a[2k−1]

True or False ?

(e) The second smallest element is either a[2] or a[3].

True or False ?

2. Show the heap after a deleteMin operation:

3

12

22 25

15

49 51

Answer:

2

2 [20 points] Hash Tables

1. Consider a hash table with m entries, with the following hash function:
h(x) = x mod m. For each input sequence below indicate the aymp-
totic running time for inserting all elements in the hash table assuming
the hash table uses (i) separate chaining, or (ii) linear probing. Your
answer should be in big O notation, like O(m log m) (not necessarily
a real answer). Please remember that the insert operation must check
if the key being inserted is not already in the hash table.

(a) 0, m, 2*m, ..., (m-1)*m (m elements)

i. Separate chaining: Answer:

ii. Linear probing: Answer:

(b) 0, 1, 2, ..., m-2, m-1 (m elements)

i. Separate chaining: Answer:

ii. Linear probing: Answer:

(c) 0, 1, 2, ..., m/2-2, m/2-1, m/2,

m, m+1, m+2, ..., 3m/2-2, 3m/2-1, 3m/2 (m elements)

i. Separate chaining: Answer:

ii. Linear probing: Answer:

3

2. For each statement below indicate whether it is true or false. Assume
the has table has m entries.

(a) Finding an element in a separate chaining hash table with n ele-
ments can be done in O(1) worst case running time.

Answer:

(b) If the fill factor λ = n/m is approximatively 0.8 then inserting in
a hash table using linear probing may never terminate

Answer:

(c) The advantange of using quadratic probing over linear probing is
that quadratic probing tends to avoid primary clustering.

Answer:

(d) If m is a prime number, the second hash function h2(x) never
returns 0, and the table has at least one empty slot, then double
hashing will always find an empty slot to insert a new element.

Answer:

4

3 [15 points] Bubble Sort

Consider the following variant of bubble sort:

void BubbleSort (int a[n]) {

swapPerformed = true

while (swapPerformed) {

swapPerformed = false

for (i=0; i<n-1; i++) {

if (a[i+1] <= a[i]) {

Swap(a[i],a[i+1])

swapPerformed = true

}

}

}

}

The function is intended to sort the array in ascending order and to run
in time O(n2), but there is a bug in the function.

1. On the code above, show where the bug is and how to fix it. Your goal
is to make a single change in the code such that the function sorts the
array in ascending order and runs in time O(n2); you do not need to
try to do other improvements.

2. Then, indicate what will go wrong if we don’t fix the bug, by choosing
one of the following answers. Assume that the input array a has at
least one duplicate value (a value that occurs two or more times in the
array). Circle one answer below.

• The function runs in time O(n3)

• The function sorts the array in descending order rather than as-
cending order.

• The function never terminates

• The function stops before the array is sorted.

• The function is not stable.

5

4 [15 points] Properties of Sorting Algorithms

For each of the sorting algorithms below, indicate whether it is stable, and
whether it is in place:

1. Insertion sort

Stable ? In place ?

2. Bubble sort

Stable ? In place ?

3. Selection sort

Stable ? In place ?

4. Heap sort

Stable ? In place ?

5. Merge sort

Stable ? In place ?

6. Quick sort

Stable ? In place ?

6

5 [30 points] Merging

Consider two sorted arrays a[m], b[n]. The pseudo-code below is the ”merge”
function; it computes a new array c with all elements in a and in b, increasing
order. Viewed as a set, c contains the union of a and b. The function runs
in time O(m+ n):

void Merge(int a[], m, int b[], n, int c[]) {

/* computes the union of a and b */

i = 0; j = 0; k = 0;

while (i < m || j < n) {

if (i >= m) c[k++] = b[j++];

else if (j >= m) c[k++] = a[i++];

else if (a[i] > b[i]) c[k++] = b[j++];

else c[k++] = a[i++];

}

}

Write two new functions, which compute the intersection, and the dif-
ference of the sets a and b respectively. That is, the Intersection func-
tion computes a new array c with all elements that are both in a and in b,
while the Difference function computes a new array c with all elements
that are in a but are not in b. Each of your functions must run in time
O(m + n). You may assume that neither a nor b have duplicate elements;
that is, a[0] < a[1] < . . . < a[n-1] and b[0] < b[1] < . . . < b[n-1].

7

1. The Intersection function. Answer:

void Intersection(int a[], m, int b[], n, int c[]) {
/* computes the intersection of a and b */

}

2. The Difference function. Answer:

void Difference(int a[], m, int b[], n, int c[]) {

}

8

