Hashing

CSE 373
Data Structures
Winter 2007

The Need for Speed

- Data structures we have looked at so far
 - Use comparison operations to find items
 - Need $O(\log N)$ time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more)
 - $\log N$ is between 6.6 and 16.6
- Maps and their implementation as Hash tables are an abstract data type designed for $O(1)$ Find and Inserts

The Map ADT

- Usual: `size()` and `isEmpty()`
- Search: `find(k)` (or `get(k)`) returns v
- Add an entry: `insert(k,v)` (or `put(k,v)`) returns v
- Delete an entry: `delete(k)` (or `remove(k)`) returns v
- The cases where for insert/delete when the key is already there/not there

Fewer Functions Faster

- compare lists and stacks
 - by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
 - `insert(L,X)` into a list versus `push(S,X)` onto a stack
- compare bst’s and hash tables
 - trees provide for known ordering of all elements
 - maps just let you (quickly) find an element but can’t list elements in order “fast”

Limited Set of Map Operations

- For many applications, a limited set of operations is all that is needed
 - Insert, Find, and Delete
 - Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
 - user defined
 - language keywords
Direct Address Tables
- Direct addressing using an array is very fast
- Assume
 - keys are integers in the set $U=\{0,1,\ldots,m-1\}$
 - m is small
 - no two elements have the same key
- Then just store each element at the array location $array[key]$ (a bucket for the key)
 - search, insert, and delete are trivial

An Issue
- If most keys in U are used
 - direct addressing can work very well (m small)
- The largest possible key in U, say m, may be much larger than the number of elements actually stored ($|U|$ much greater than $|K|$)
 - the table is very sparse and wastes space
 - in worst case, table too large to have in memory
- If most keys in U are not used
 - need to map U to a smaller set closer in size to K

Hashing Schemes
- We want to store N items in a table of size M, at a location computed from the key K
- Hash function
 - Method for computing table index from key
- Need of a collision resolution strategy
 - How to handle two keys that hash to the same index

“Find” an Element in an Array
- Data records can be stored in arrays.
 - $A[0] = \{\text{"CHEM 110"}, \text{Size 89}\}$
 - $A[17] = \{\text{"CSE 373"}, \text{Size 42}\}$
- Class size for CSE 373?
 - Linear search the array – $O(N)$ worst case time
 - Binary search - $O(\log N)$ worst case
Go Directly to the Element

- What if we could directly index into the array using the key?
 > A["CSE 373"] = {Size 42}
- Main idea behind hash tables
 > Use a key based on some aspect of the data to index directly into an array
 > O(1) time to access records

Indexing into Hash Table

- Need a fast hash function to convert the element key (string or number) to an integer (the hash value) (i.e., map from U to index)
 > Then use this value to index into an array
 > Hash("CSE 373") = 157, Hash("CSE 143") = 101
- Output of the hash function
 > must always be less than size of array
 > should be as evenly distributed as possible

Choosing the Hash Function

- What properties do we want from a hash function?
 > Want universe of hash values to be distributed randomly to minimize collisions
 > Don’t want systematic nonrandom pattern in selection of keys to lead to systematic collisions
 > Want hash value to depend on all values in entire key and their positions

The Key Values are Important

- Notice that one issue with all the hash functions is that the actual content of the key set matters
- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
 > variable names, words in the English language, reserved keywords, telephone numbers, etc, etc

Simple Hashes

- It’s possible to have very simple hash functions if you are certain of your keys
- For example,
 > suppose we know that the keys s will be real numbers uniformly distributed over 0 ≤ s < 1
 > Then a very fast, very good hash function is
 > hash(s) = floor(s·m)
 > where m is the size of the table

Example of a Very Simple Mapping

- hash(s) = floor(s·m) maps from 0 ≤ s < 1 to 0..m-1
 > m = 10

Note the even distribution. There are collisions, but we will deal with them later.
Perfect Hashing
• In some cases it’s possible to map a known set of keys uniquely to a set of index values
• You must know every single key beforehand and be able to derive a function that works one-to-one

Mod Hash Function
• One solution for a less constrained key set
 › modular arithmetic
 • a mod size
 › remainder when "a" is divided by "size"
 › in Java this is written as r = a % size;
 • If TableSize = 251
 • 408 mod 251 = 157
 • 352 mod 251 = 101

Modulo Mapping
• a mod m maps from integers to 0..m-1
 › one to one? no
 › onto? Yes (for every bucket there is a possible key)

Hashing Integers
• If keys are integers, we can use the hash function:
 › Hash(key) = key mod TableSize
• Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, …)
 › all keys map to the same index
 › Need to pick TableSize carefully: often, a prime number

Nonnumerical Keys
• Many hash functions assume that the universe of keys is the natural numbers N={0,1,…}
• Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
• Generally work with the ASCII character codes when converting strings to numbers

Characters to Integers
• If keys are strings can get an integer by adding up ASCII values of characters in key
• We are converting a very large string c_0c_1c_2…c_n to a relatively small number c_0+c_1+c_2+…+c_n mod size.
Hash Must be Onto Table

• **Problem 2**: What if TableSize is 10,000 and all keys are 8 or less characters long?
 › chars have values between 0 and 127
 › Keys will hash only to positions 0 through 8*127 = 1016
• Need to distribute keys over the entire table or the extra space is wasted

Problems with Adding Characters

• Problems with adding up character values for string keys
 › If string keys are short, will not hash evenly to all of the hash table
 › Different character combinations hash to same value
 • "abc", "bca", and "cab" all add up to the same value (recall this was Problem 1)

Characters as Integers

• An character string can be thought of as a base 256 number. The string \(c_1c_2...c_n\) can be thought of as the number
 \(c_n + 256c_{n-1} + 256^2c_{n-2} + ... + 256^{n-1}c_1\)
• Use Horner’s Rule to Hash!
 \[
 r = 0; \\
 \text{for } i = 1 \text{ to } n \text{ do} \\
 \quad r := (c[i] + 256*r) \mod \text{TableSize}
 \]

Collisions

• A **collision** occurs when two different keys hash to the same value
 › E.g. For TableSize = 17, the keys 18 and 35 hash to the same value for the mod17 hash function
 › 18 mod 17 = 1 and 35 mod 17 = 1
• Cannot store both data records in the same slot in array!

Collision Resolution

• Separate Chaining
 › Use data structure (such as a linked list) to store multiple items that hash to the same slot
• Open addressing (or probing)
 › search for empty slots, e.g., using a second function and store item in first empty slot that is found

Resolution by Chaining

• Each hash table cell holds pointer to linked list of records with same hash value
• Collision: Insert item into linked list
• To Find an item: compute hash value, then do Find on linked list
• Note that there are potentially as many as TableSize lists
Why Lists?

- Can use List ADT for Find/Insert/Delete in linked list
 - O(M) runtime where M is the number of elements in the particular chain
- Can also use Binary Search Trees
 - O(log M) time instead of O(M)
 - But the number of elements to search through, M, should be small (otherwise the hashing function is bad or the table is too small)
 - generally not worth the overhead of BSTs

Load Factor of a Hash Table

- Let N = number of items to be stored
- Load factor $\lambda = \frac{N}{\text{TableSize}}$
 - TableSize = 101 and N = 505, then $\lambda = 5$
 - TableSize = 101 and N = 10, then $\lambda = 0.1$
- Average length of chained list = λ and so average time for accessing an item = $O(1) + O(\lambda)$
 - Want λ to be smaller than 1 but close to 1 if good hashing function (i.e. TableSize \approx N)
 - With chaining hashing continues to work for $\lambda > 1$

Resolution by Open Addressing

- No links, all keys are in the table
 - reduced overhead saves space
- When searching for x, check locations $h_1(x)$, $h_2(x)$, $h_3(x)$, ... until either
 - x is found; or
 - we find an empty location (x not present)
- Various flavors of open addressing differ in which probe sequence they use

Cell Full? Keep Looking.

- $h_i(x) = (\text{Hash}(x) + F(i)) \mod \text{TableSize}$
 - Define $F(0) = 0$
- F is the collision resolution function. Some possibilities:
 - Linear: $F(i) = i$
 - Quadratic: $F(i) = i^2$
 - Double Hashing: $F(i) = i \cdot \text{Hash}_2(x)$

Linear Probing

- When searching for k, check locations $h(k)$, $h(k)+1$, $h(k)+2$, ... mod TableSize until either
 - k is found; or
 - we find an empty location (k not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table \Rightarrow infinite loop.

Primary Clustering Problem

- Once a block of a few contiguous occupied positions emerges in table, it becomes a "target" for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells
Hashing 37

Quadratic Probing

- When searching for x, check locations $h_1(x)$, $h_1(x) + 1^2$, $h_1(x) + 2^2$, ... mod TableSize until either
 - x is found; or
 - we find an empty location (x not present)
- No primary clustering but secondary clustering possible

Hashing 38

Double Hashing

- When searching for x, check locations $h_1(x)$, $h_1(x) + h_2(x)$, $h_1(x) + 2h_2(x)$, ... mod TableSize until either
 - x is found; or
 - we find an empty location (x not present)
- Must be careful about $h_2(x)$
 - Not 0 and not a divisor of M
 - E.g., $h_1(k) = k$ mod m_1, $h_2(k) = 1 + (k$ mod $m_2)$
 - where m_2 is slightly less than m_1

Hashing 39

Rules of Thumb

- Separate chaining is simple but wastes space...
- Linear probing uses space better, is fast when tables are sparse
- Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
- For average cost (i.e., number of comparisons) of about t
 - Max load for Linear Probing is $1 - 1/\sqrt{t}$
 - Max load for Double Hashing is $1 - 1/t$

Hashing 40

Rehashing – Rebuild the Table

- Need to use lazy deletion if we use probing (why?)
 - Need to mark array slots as deleted after Delete
 - Consequently, deleting doesn’t make the table any less full than it was before the delete
- If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and Inserts may fail

Hashing 41

Rehashing

- Build a bigger hash table of approximately twice the size when λ exceeds a particular value
 - Go through old hash table, ignoring items marked deleted
 - Recompute hash value for each non-deleted key and put the item in new position in new table
 - Cannot just copy data from old table because the bigger table has a new hash function
- Running time is $O(N)$ but happens very infrequently

Hashing 42

Rehashing Example

- Open hashing – $h_1(x) = x$ mod 5 rehashes to $h_2(x) = x$ mod 11.

<table>
<thead>
<tr>
<th>$\lambda = 1$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>37</td>
<td>83</td>
<td>52</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\lambda = 5/11$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>37</td>
<td>83</td>
<td>52</td>
<td>98</td>
<td>52</td>
<td>98</td>
<td>52</td>
<td>98</td>
<td>52</td>
<td>98</td>
</tr>
</tbody>
</table>
Caveats

• Hash functions are very often the cause of performance bugs.
• Hash functions often make the code not portable.
• If a particular hash function behaves badly on your data, then pick another.
• Always check where the time goes