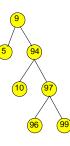
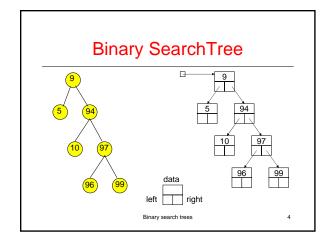
Binary Search Trees


CSE 373
Data Structures
Winter 2007

Binary Search Trees

- Binary search trees are binary trees in which
 - all values in the node's left subtree are less than node value
 - all values in the node's right subtree are greater than node value
- · Operations:
 - Find, FindMin, FindMax, Insert, Delete

What happens when we traverse the tree in inorder?



Operations on Binary Search Trees

- · How would you implement these?
 - Recursive definition of binary search trees allows recursive routines
- FindMin
- FindMax
- Find
- · Insert (but be careful when using recursion)
- · Delete (the only tricky one)

Binary search trees

Find

```
Find(T : tree pointer, x : element): tree pointer {
  case {
    T = null : return null;
    T.data = x : return T;
    T.data > x : return Find(T.left,x);
    T.data < x : return Find(T.right,x)
}
</pre>
```

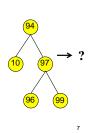
- Question: How could you do this iteratively?Good idea? Bad idea?
 - •(in terms of what: Implementation ease? Time? Space?)

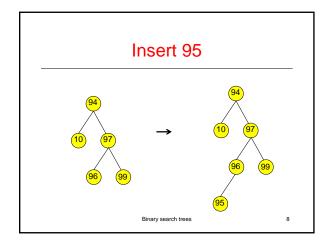
Binary search trees

FindMin

 Design recursive FindMin operation that returns the smallest element in a binary search tree.

```
FindMin(T : tree pointer) : tree pointer {
// precondition: T is not null //
if T.left = null return T
else return FindMin(T.left)
}
```


Binary search trees


1

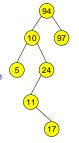
- Insert(T: tree, X: element)
 - > Do a "Find" operation for X
 - If X is found → update (no need to insert)
 - Else, "Find" stops at a NULL pointer
 - > Insert Node with X there
- Example: Insert 95

Binary search trees

Recursive Insert

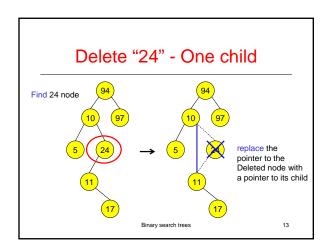
Binary search trees

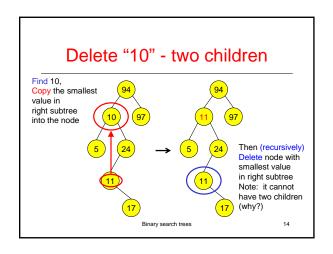
Delete Operation

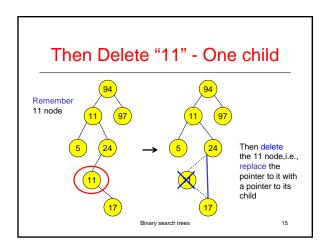

- Delete is a bit trickier...Why?
- Suppose you want to delete 10
- Strategy:
 - > Find 10
 - > Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?

Binary search trees

10


Delete Operation


- Problem: When you delete a node, what do you replace it by?
- Solution:
 - > If it has no children, by NULL
 - > If it has 1 child, by that child
 - If it has 2 children, by the node with the smallest value in its right subtree (the inorder successor of the node)



Binary search trees

Find 5 node 10 97 10 97 You need to NULL the pointer to the node that you are deleting 17 Binary search trees 12

