Sets and Partitions

CSE 373
Data Structures
Winter 2007

Reading

• Reading Chapter 8

Sets

• Set: Collection (unordered) of distinct objects
• Union of two sets
 \(A \cup B = \{x: x \text{ is in } A \text{ or } x \text{ is in } B\} \)
• Intersection of two sets
 \(A \cap B = \{x: x \text{ is in } A \text{ and } x \text{ is in } B\} \)
• Subtraction of two sets
 \(A - B = \{x: x \text{ is in } A \text{ and } x \text{ is not in } B\} \)

Set ADT

• Make a set
• Union of a set with another
• Intersection of a set with another
• Subtraction of a set from another

Set: simple implementation

• Store elements in a list, i.e., an ordered sequence
 \(\text{There must be a consistent total order among elements of the various sets that will be dealt with} \)
• All methods defined previously can be done in \(O(n) \)
 \(\text{Not very interesting!} \)

Disjoint Sets and Partitions

• Two sets are disjoint if their intersection is the empty set
• A partition is a collection of disjoint sets
Equivalence Relations

- A relation R is defined on set S if for every pair of elements $a, b \in S$, $a R b$ is either true or false.
- An equivalence relation is a relation R that satisfies the 3 properties:
 - Reflexive: $a R a$ for all $a \in S$
 - Symmetric: $a R b$ iff $b R a$; for all $a, b \in S$
 - Transitive: $a R b$ and $b R c$ implies $a R c$

Equivalence Classes

- Given an equivalence relation R, decide whether a pair of elements $a, b \in S$ is such that $a R b$.
- The equivalence class of an element a is the subset of S of all elements related to a.
- Equivalence classes are disjoint sets

Dynamic Equivalence Problem

- Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes.
- Requires two operations:
 - Find the equivalence class (set) of a given element
 - Union of two sets
- It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!

Methods for Partitions

- makeSet(x) : creates a single set containing the element x and its "name"
- Union(A, B): returns the new set $A \cup B$ and destroys the old A and the old B
- Find(p): returns the "name" of the set that contains p

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
 - $\{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}$
- Each set has a unique name, one of its members
 - $\{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}$

Union

- Union(x,y) – take the union of two sets named x and y
 - $\{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}$
 - Union($5,1$)
 - $\{3,5,7,1,6\}, \{4,2,8\}, \{9\}$
Find

- Find(x) – return the name of the set containing x.
 - \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\}
 - Find(1) = 5
 - Find(4) = 8

An Application

- Build a random maze by erasing edges.

An Application (ct’d)

- Pick Start and End

An Application (ct’d)

- Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary edges are deleted
- Every cell is reachable from every other cell.
- There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.

A Cycle (we don’t want that)
Sets 19

A Good Solution

Start

\[\text{End} \]

Sets 20

Good Solution: A Hidden Tree

Start

\[\text{End} \]

Sets 21

Number the Cells

We have disjoint sets \(S = \{ (1), (2), (3), \ldots (36) \} \) each cell is unto itself. We have all possible edges \(E = \{ (1,2), (1,7), (2,8), (2,3), \ldots \} \) 60 edges total.

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Sets 22

Basic Algorithm

- \(S \) = set of sets of connected cells
- \(E \) = set of edges
- \(\text{Maze} \) = set of maze edges initially empty

While there is more than one set in \(S \)
 pick a random edge \((x,y)\) and remove from \(E \)
 \(u := \text{Find}(x); \ v := \text{Find}(y); \)
 if \(u = v \) then
 \(\text{Union}(u,v) \) //knock down the wall between the cells in the same set are connected
 else
 add \((x,y)\) to \(\text{Maze} \) //don't remove because there is already a path between \(x \) and \(y \)
All remaining members of \(E \) together with \(\text{Maze} \) form the maze.

Sets 23

Example Step

Pick \((8,14)\)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Sets 24

Example

\(S = \{ (1,2,7,8,9,13,19), (3), (4), (5), (6), (10), (11,17), (12,13,14,20,26,27), (15,16,21), (22,23,29,30,32,33,34,35,36) \} \)

\(\text{Find}(8) = 7 \)
\(\text{Find}(14) = 20 \)
\(\text{Union}(7,20) \)
Example

Pick (19, 20)

Start 1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36 End

S = \{1, 2, 7, 8, 9, 13, 19, 14, 20, 26, 27\}
S = \{3\}
S = \{4\}
S = \{5\}
S = \{10\}
S = \{11, 17\}
S = \{12\}
S = \{15, 16, 21\}
S = \{22, 23, 24, 29, 39, 32, 33, 34, 35, 36\}

Example at the End

Start 1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36 End

S = \{1, 2, 3, 4, 5, 6, 7, ..., 36\}

Up-Tree representation of a set

Initial state

1 2 3 4 5 6 7

Intermediate state

1 2 3 4 5 7

Roots are the names of each set.

Find Operation

• Find(x) follow x to the root and return the root

Find(6) = 7

Union Operation

• Union(i, j) - assuming i and j roots, point i to j.

Union(1, 7)

Simple Implementation

• Array of indices (Up[i] is parent of i)

Up[x] = 0 means x is a root.

Simple Implementation

1 2 3 4 5 6 7
Up[x] = 0 means x is a root.
Union

Union(up[] : integer array, x, y : integer) : {
 //precondition: x and y are roots//
 Up[x] := y
}

Constant Time!

Find

Recursive
Find(up[] : integer array, x : integer) : integer {
 //precondition: x is in the range 1 to size//
 if up[x] = 0 then return x
 else return Find(up,up[x]);
}

Iterative
Find(up[] : integer array, x : integer) : integer {
 //precondition: x is in the range 1 to size//
 while up[x] ≠ 0 do
 x := up[x];
 return x;
}

A Bad Case

1 2 3 ... 6
Union(1,2)

1 2 3 ... 6
Union(2,3)

1 2 3 ... 6
Union(n-1,n)

Find(1) n steps!!

Weighted Union

- Weighted Union (weight = number of nodes)
 - Always point the smaller tree to the root of the larger tree

Example Again

1 2 3 ... 6
Union(1,2)

1 2 3 ... 6
Union(2,3)

1 2 3 ... 6
Union(n-1,n)

Find(1) constant time

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - Basis: $h = 0$. The up-tree has one node, $2^0 = 1$
 - Inductive step: Assume true for all $h' < h$.

\[
W(T) \geq W(T_{h-1}) \geq 2^{h-1} + 2^{h-1} = 2^h
\]
Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- \(n > 2^h \)
- \(\log_2 n > h \)
- Find(x) in tree T takes \(O(\log n) \) time.
- Can we do better?

Worst Case for Weighted Union

Example of Worst Cast (cont')

After \(n - 1 = n/2 + n/4 + \ldots + 1 \) Weighted Unions

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).

Elegant Array Implementation

Can save the extra space by storing the complement of weight in the space reserved for the root.

Weighted Union

W-Union(1, j : index){
 // i and j are roots/
 wi := weight[i];
 wj := weight[j];
 if wi < wj then
 up[i] := j;
 weight[j] := wi + wj;
 else
 up[j] := i;
 weight[i] := wi + wj;
}

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Self-Adjustment Works

Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] ≠ 0 do //find root/
        r := up[r];
    if i ≠ r then //compress path/
        k := up[i];
        while k ≠ r do
            up[i] := r;
            i := k;
            k := up[k];
        return(r)
}
```

Example

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is $O(1)$ and for a PC-Find is $O(\log n)$.
- Time complexity for $m \geq n$ operations on n elements is $O(m \log^* n)$ where $\log^* n$ is a very slow growing function.
 - $\log^* n < 7$ for all reasonable n. Essentially constant time per operation!

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is $O(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.