Minimum Spanning Trees

CSE 373
Data Structures
Winter 2007

Reading

• Chapter 9
 › Section 9.5

Spanning Tree

• Given (connected) G(V,E) a spanning tree T(V',E'):
 › Spans the graph (V' = V)
 › Forms a tree (no cycles); E' has |V| -1 edges

Minimum Spanning Tree

• Edges are weighted: find minimum cost spanning tree
• Applications
 › Find cheapest way to wire your house
 › Find minimum cost to send a message on the Internet

Basic Strategy

• Strategy:
 › Add an edge of minimum cost that does not create a cycle (greedy algorithm)
 › Repeat |V| -1 times
 › Correct since if we could replace an edge with one of lower cost, the algorithm would have picked it up

Two Algorithms

• Prim: (build tree incrementally)
 › Pick lower cost edge connected to known (incomplete) spanning tree that does not create a cycle and expand to include it in the tree
• Kruskal: (build forest that will finish as a tree)
 › Pick lower cost edge not yet in a tree that does not create a cycle and expand to include it somewhere in the forest
Prim and Kruskal et al.

Robert Prim (1921-) Rediscover algorithms (1957)
Joseph Kruskal (1929-) (1965)

Published in Czech in 1934 by
Jamik (1897-1970)

Based on Otakar Boruvka (1899-1995)
MST (1926) to cover electrical network in Bohemia

Prim's algorithm

Starting from empty T, choose a vertex at
random and initialize
$V = \{1\}, E' = \emptyset$

Prim's algorithm

Choose the vertex u not in
V such that edge weight
from u to a vertex in V is
minimal (greedy!)
$V = \{1,3\}, E' = \{(1,3)\}$

Prim's algorithm

Repeat until all vertices have
been chosen
$V = \{1,3,4,5,2,6\}, E' = \{(1,3),(3,4),(4,5),(5,2),(2,6)\}$

Final Cost: $1 + 3 + 4 + 1 + 1 = 10$

Prim's Algorithm Implementation

- Assume adjacency list representation
- Initialize connection cost of each node to "inf" and “unmark” them
- Choose one node, say v and set $cost(v) = 0$ and $prev(v) = 0$
- While they are unmarked nodes
 - Select the unmarked node u with minimum cost; mark it
 - For each unmarked node w adjacent to u
 - if $cost(u,w) < cost(w)$ then $cost(w) := cost(u,w)$
 - $prev[w] = u$

- Looks a lot like Dijkstra’s algorithm!
Prim's Algorithm Analysis

- Like Dijkstra's algorithm
- If the "Select the unmarked node u with minimum cost" is done with binary heap then $O((n+m)\log n)$

Kruskal's Algorithm

- Select edges in order of increasing cost
- Accept an edge to expand tree or forest only if it does not cause a cycle
- Implementation using adjacency list, priority queues and disjoint sets

Kruskal's Algorithm

Initialize a forest of trees, each tree being a single node
Build a priority queue of edges with priority being lowest cost
Repeat until $|V|-1$ edges have been accepted {
 Deletemin edge from priority queue
 If it forms a cycle then discard it
 else accept the edge – It will join 2 existing trees yielding a larger tree and reducing the forest by one tree
}
The accepted edges form the minimum spanning tree

Detecting Cycles

- If the edge to be added (u,v) is such that vertices u and v belong to the same tree, then by adding (u,v) you would form a cycle
 - Therefore to check, Find(u) and Find(v). If they are the same discard (u,v)
 - If they are different Union(Find(u),Find(v))

Properties of trees in K's algorithm

- Vertices in different trees are disjoint
 - True at initialization and Union won't modify the fact for remaining trees
- Trees form equivalent classes under the relation "is connected to"
 - u connected to u (reflexivity)
 - u connected to v implies v connected to u (symmetry)
 - u connected to v and v connected to w implies a path from u to w so u connected to w (transitivity)

K's Algorithm Data Structures

- Adjacency list for the graph
 - To perform the initialization of the data structures below
- Disjoint Set ADT's for the trees (recall Up tree implementation of Union-Find)
- Binary heap for edges
Example

Initialization

Initially, Forest of 6 trees
F = {1}, {2}, {3}, {4}, {5}, {6}

Edges in a heap (not shown)

Step 1

Select edge with lowest cost (2,5)
Find(2) = 2, Find (5) = 5
Union(2,5)
F = {1}, {2,5}, {3}, {4}, {6}
1 edge accepted

Step 2

Select edge with lowest cost (2,6)
Find(2) = 2, Find (6) = 6
Union(2,6)
F = {1}, {2,5,6}, {3}, {4}
2 edges accepted

Step 3

Select edge with lowest cost (1,3)
Find(1) = 1, Find (3) = 3
Union(1,3)
F = {1,3}, {2,5,6}, {4}
3 edges accepted

Step 4

Select edge with lowest cost (5,6)
Find(5) = 2, Find (6) = 2
Do nothing
F = {1,3}, {2,5,6}, {4}
3 edges accepted
Step 5
Select edge with lowest cost (3,4)
Find(3) = 1, Find (4) = 4
Union(1,4)
F= \{(1,3,4),(2,5,6)\}
4 edges accepted

Step 6
Select edge with lowest cost (4,5)
Find(4) = 1, Find (5) = 2
Union(1,2)
F= \{(1,3,4,2,5,6)\}
5 edges accepted: end
Total cost = 10
Although there is a unique spanning tree in this example, this is not generally the case

Kruskal’s Algorithm Analysis
- Initialize forest O(n)
- Initialize heap O(m), m = |E|
- Loop performed m times
 - In the loop one Deletemin O(log m)
 - Two Find, each O(logn)
 - One Union (at most) O(1)
- So worst case O(mlogm) = O(mlogn)

Time Complexity Summary
- Recall that m = |E| = O(V^2) = O(n^2)
- Prim’s runs in O((n+m) log n)
- Kruskal’s runs in O(mlogm) = O(mlogn)
- In practice, Kruskal has a tendency to run faster since graphs might not be dense and not all edges need to be looked at in the Deletemin operations