Recall Path cost, Path length
- Path cost: the sum of the costs of each edge
- Path length: the number of edges in the path
 - Path length is the unweighted path cost

Seattle
San Francisco
Dallas
Chicago
Salt Lake City

\[
\text{length}(p) = 5 \\
\text{cost}(p) = 11
\]

Shortest Path Problems
- Given a graph \(G = (V, E) \) and a "source" vertex \(s \) in \(V \), find the minimum cost paths from \(s \) to every vertex in \(V \)
- Many variations:
 - unweighted vs. weighted
 - cyclic vs. acyclic
 - pos. weights only vs. pos. and neg. weights
 - etc.

Why study shortest path problems?
- Traveling on a budget: What is the cheapest airline schedule from Seattle to city X?
- Optimizing routing of packets on the internet:
 - Vertices are routers and edges are network links with different delays. What is the routing path with smallest total delay?
- Shipping: Find which highways and roads to take to minimize total delay due to traffic
- etc.

Unweighted Shortest Path
Problem: Given a "source" vertex \(s \) in an unweighted directed graph \(G = (V, E) \), find the shortest path from \(s \) to all vertices in \(G \)
Breadth-First Search Solution

- **Basic Idea**: Starting at node \(s \), find vertices that can be reached using 0, 1, 2, 3, ..., \(N-1 \) edges (works even for cyclic graphs!)

- **Example**: Shortest Path length

Breadth-First Search Alg.

- Uses a queue to track vertices that are “nearby”
- Source vertex is \(s \)

```plaintext
Distance[s] := 0
Enqueue(Q, s); Mark(s)

while queue is not empty do
    X := Dequeue(Q);
    for each vertex Y adjacent to X do
        if Y is unmarked then
            Distance[Y] := Distance[X] + 1;
            Previous[Y] := X; // if we want to record paths
            Enqueue(Q, Y); Mark(Y);
```

- Running time = \(O(|V| + |E|) \)

Example (ct’d)

- **Example (ct’d)**

- **Example**: Shortest Path length

Example (ct’d)

- **Example (ct’d)**
What if edges have weights?

- Breadth First Search does not work anymore
 - minimum cost path may have more edges than minimum length path

Shortest path (length) from C to A:
- CÆA (cost = 9)

Minimum Cost Path = CÆEÆDÆA (cost = 8)

Dijkstra’s Algorithm for Weighted Shortest Path

- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Each vertex has a cost for path from initial vertex

Basic Idea of Dijkstra’s Algorithm (1959)

- Find the vertex with smallest cost that has not been “marked” yet.
- Mark it and compute the cost of its neighbors.
- Do this until all vertices are marked.
- Note that each step of the algorithm we are marking one vertex and we won’t change our decision: hence the term “greedy” algorithm
- Works for directed and undirected graphs

Dijkstra’s Algorithm

- Edsger Dijkstra (1930-2002)
Dijkstra’s Shortest Path Algorithm

- Initialize the cost of s to 0, and all the rest of the nodes to ∞.
- Initialize set S to be ∅.
 - S is the set of nodes to which we have a shortest path.
- While S is not all vertices:
 - Select the node A with the lowest cost that is not in S and identify the node as now being in S.
 - for each node B adjacent to A:
 - if cost(A)+cost(A,B) < B’s currently known cost
 - set cost(B) = cost(A)+cost(A,B)
 - set previous(B) = A so that we can remember the path.

Example: Initialization

Cost(source) = 0
Cost(all vertices but source) = ∞

Pick vertex not in S with lowest cost.

Example: Update Cost neighbors

Cost(v3) = 1 + 2 = 3
Cost(v5) = 1 + 2 = 3
Cost(v6) = 1 + 8 = 9
Cost(v7) = 1 + 4 = 5

Example: pick vertex with lowest cost and add it to S

Pick vertex not in S with lowest cost, i.e., v4.

Example (Ct’d)

Pick vertex not in S with lowest cost (v2) and update neighbors.

Note: cost(v4) not updated since already in S and cost(v5) not updated since it is larger than previously computed.
Example: (ct’d)

Pick vertex not in \(S \) (v7) with lowest cost and update neighbors

No updating

Cost(v6) = \(\min(8, 5+1) = 6 \)

Priorities queue for finding and deleting lowest cost vertex
and for decreasing costs (Binary Heap works)

Data Structures

- Adjacency Lists
 - previous cost
 - priority queue pointers
 - next cost

Priority queue for finding and deleting lowest cost vertex
and for decreasing costs (Binary Heap works)

Priority Queue

- index in heap
- node number

Before the update, but after find min, i.e., v1 and v4 have been "deletemin"
Priority Queue

- **Index in Heap**
- **Node Number**
- **Update Node 3**
- **Percolate Up**

Time Complexity

- **n vertices and m edges**
- **Initialize data structures O(n+m)**
- **Find min cost vertices O(n log n)**
 - n delete mins
- **Update costs O(m log n)**
 - Potentially m updates
- **Update previous pointers O(m)**
 - Potentially m updates
- **Total time O((n + m) log n) - very fast.**

Correctness

- **Dijkstra's algorithm is an example of a greedy algorithm**
- **Greedy algorithms always make choices that currently seem the best**
 - Short-sighted – no consideration of long-term or global issues
 - Locally optimal does not always mean globally optimal
- **In Dijkstra's case – choose the least cost node, but what if there is another path through other vertices that is cheaper?**

“Cloudy” Proof

- **Least Cost Node**
- **Next Shortest Path from Inside the Known Cloud**
- **If the path to G is the next shortest path, the path to P must be at least as long. Therefore, any path through P to G cannot be shorter!**

Inside the Cloud (Proof)

- **Everything inside the cloud has the correct shortest path**
- **Proof is by induction on the number of nodes in the cloud:**
 - **Base case:** Initial cloud is just the source with shortest path 0
 - **Inductive hypothesis:** cloud of k-1 nodes all have shortest paths
 - **Inductive step:** choose the least cost node G → has to be the shortest path to G (previous slide). Add k-th node G to the cloud