Directed Graph Algorithms – Topological Sort

CSE 373
Data Structures
Winter 2007

Readings

• Reading Chapter 9
 › Section 9.2

Problem: Find an order in which all these courses can be taken.
Example: 142 → 143 → 378 → 370 → 321 → 341 → 322 → 326 → 421 → 401

In order to take a course, you must take all of its prerequisites first.

Topological Sort

Given a digraph \(G = (V, E) \), find a linear ordering of its vertices such that:
for any edge \((v, w)\) in \(E \), \(v \) precedes \(w \) in the ordering.

Any linear ordering in which all the arrows go to the right is a valid solution.
Note that \(F \) can go anywhere in this list because it is not connected.
Also the solution is not unique.

Any linear ordering in which an arrow goes to the left is not a valid solution.

NO!
Paths and Cycles

• Given a digraph G = (V,E), a path is a sequence of vertices v₁, v₂, …, vₖ such that:
 › (vᵢ, vᵢ₊₁) in E for 1 ≤ i < k
 › path length = number of edges in the path
 › path cost = sum of costs of each edge

• A path is a cycle if:
 › k > 1; v₁ = vₖ
• G is acyclic if it has no cycles.

Only acyclic graphs can be topologically sorted

• A directed graph with a cycle cannot be topologically sorted.

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
 • The "in-degree" of these vertices is zero

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges
 • If no such vertices, graph has only cycle(s) (cyclic graph)
 • Topological sort not possible – Halt.

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
 • Select one such vertex

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.
Continue until done
Repeat Step 1 and Step 2 until graph is empty

Select B. Copy to sorted list. Delete B and its edges.

Select C. Copy to sorted list. Delete C and its edges.

Select D. Copy to sorted list. Delete D and its edges.

Select E. Copy to sorted list. Delete E and its edges. Select F. Copy to sorted list. Delete F and its edges.

Done
Implementation

Assume adjacency list representation

<table>
<thead>
<tr>
<th>Translation array</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculate In-degrees

In-Degree array; or add a field to array A

```
for i = 1 to n do
    D[i] := 0; endfor
for i = 1 to n do
    x := A[i];
    while x ≠ null do
        D[x.value] := D[x.value] + 1;
        x := x.next;
    endwhile
endfor
```

Maintaining Degree 0 Vertices

Key idea: Initialize and maintain a queue (or stack) of vertices with In-Degree 0

```
Queue
```

Topo Sort using a Queue (breadth-first)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree becomes zero

```
Queue
```

Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 (a) Dequeue and output a vertex
 (b) Reduce In-Degree of all vertices adjacent to it by 1
 (c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
Some Detail

Main Loop
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x];
 while y ≠ null do
 D[y.value] := D[y.value] - 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile

Topological Sort Analysis

- Initialize In-Degree array: O(|V| + |E|)
- Initialize Queue with In-Degree 0 vertices: O(|V|)
- Dequeue and output vertex:
 \[|V| \] vertices, each takes only O(1) to dequeue and output: O(|V|)
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 \[O(|E|) \]
- For input graph G=(V,E) run time = O(|V| + |E|)
 \[\text{Linear time!} \]

Topo Sort using a Stack (depth-first)

After each vertex is output, when updating In-Degree array, push any vertex whose In-Degree becomes zero