Priority Queues & Binary Heaps

CSE 373
Data Structures
Winter 2007

FindMin Problem
- Quickly find the smallest (or highest priority) item in a set
- Applications:
 - Operating system needs to schedule jobs according to priority instead of FIFO
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)
 - Find student with highest grade, employee with highest salary etc.
 - Find "most important" customer waiting in line

Priority Queue ADT
- Priority Queue can efficiently do:
 - FindMin() • Returns minimum value but does not delete it
 - DeleteMin() • Returns minimum value and deletes it
 - Insert(k) • In GT Insert(k,x) where k is the key and x the value. In all algorithms the important part is the key, a "comparable" item. We'll skip the value.
 - size() and isEmpty()

List implementation of a Priority Queue
- What if we use unsorted lists:
 - FindMin and DeleteMin are O(n)
 • In fact you have to go through the whole list
 - Insert(k) is O(1)
- What if we used sorted lists
 - FindMin and DeleteMin are O(1)
 • Be careful if we want both Min and Max (circular array or doubly linked list)
 - Insert(k) is O(n)

BST implementation of a Priority Queue
- Worst case (degenerate tree)
 - FindMin, DeleteMin and Insert(k) are all O(n)
- Best case (completely balanced BST)
 - FindMin, DeleteMin and Insert(k) are all O(logn)
- Balanced BSTs
 - FindMin, DeleteMin and Insert(k) are all O(logn)

Readings
- Chapter 6
 - Section 6.1-6.4
Better than a speeding BST

- Can we do better than Balanced Binary Search Trees?
- Very limited requirements: Insert, FindMin, DeleteMin. The goals are:
 - FindMin is $O(1)$
 - Insert is $O(\log N)$
 - DeleteMin is $O(\log N)$

Binary Heaps

- A binary heap is a binary tree (NOT a BST) that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - Satisfies the heap order property
 - every node is less than or equal to its children
 - or every node is greater than or equal to its children
 - The root node is always the smallest node
 - or the largest, depending on the heap order

Heap order property

- A heap provides limited ordering information:
- Each path is sorted, but the subtrees are not sorted relative to each other
 - A binary heap is NOT a binary search tree

Structure property

- A binary heap is a complete tree
 - All nodes are in use except for possibly the right end of the bottom row

Binary Heap vs Binary Search Tree

- Binary Heap
- Binary Search Tree

Examples

- Complete tree, heap order is "max"
- Complete tree, heap order is "min"
- Complete tree, but min heap order is broken
Array Implementation of Heaps

- Root node = A[1]
- Keep track of current size N (number of nodes)

```
value  0  1  2  3  4  5  6  7
index   0  1  2  3  4  5  6  7
```

N = 5

FindMin and DeleteMin

- FindMin: Easy!
 › Return root value A[1]
 › Run time = ?

- DeleteMin:
 › Delete (and return) value at root node

DeleteMin

- Delete (and return) value at root node

Maintain the Structure Property

- We now have a “Hole” at the root
 › Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete

Maintain the Heap Property

- The last value has lost its node
 › we need to find a new place for it
- We can do a simple insertion sort - like operation to find the correct place for it in the tree

DeleteMin: Percolate Down

- Copy smaller child up and go down one level
- Done if both children are ≥ item or reached a leaf node
- What is the run time?
Percolate Down

```
PercolateDown(i: integer, x : integer): {
  N := number of entries in heap;
  j := integer;
  Case{
    2i > N : A[i] := x; // at bottom
    2i = N : if A[2i] < x then
    else A[i] := x;
             else j := 2i+1;
    if A[j] < x then
      A[i] := A[j]; PercolateDown(j,x);
    else A[i] := x;
  }
}
```

DeleteMin: Run Time Analysis

- Run time is O(depth of heap)
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 \[\text{depth} = \lceil \log_2(N) \rceil \]
- Run time of DeleteMin is O(log N)

Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done

Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly

Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation on the path from the new place to the root to find the correct place for it in the tree

Insert: Percolate Up

- Start at last node and keep comparing with parent \(A[i/2]\)
- If parent larger, copy parent down and go up one level
- Done if parent \(\leq\) item or reached top node \(A[1]\)
- Run time?
Insert: Done

- Run time?

PercUp

```plaintext
PercUp(i : integer, x : integer): {
if i = 1 then A[i] := x
else if A[i/2] < x then
    A[i] := x;
else
    A[i] := A[i/2];
    Percup(i/2,x);
}
```

Sentinel Values

- Every iteration of Insert needs to test:
 - if it has reached the top node A[1]
 - if parent ≤ item
- Can avoid first test if A[0] contains a very large negative value
 - sentinel -∞ < item, for all items
- Second test alone always stops at top

<table>
<thead>
<tr>
<th>value</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Binary Heap Analysis

- Space needed for heap of N nodes: $O(\text{MaxN})$
 - An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel
- Time
 - FindMin: $O(1)$
 - DeleteMin and Insert: $O(\log N)$
 - BuildHeap from N inputs: $O(N)$ (forthcoming)