Minimum Spanning Trees

CSE 373
Data Structures
Spanning Trees

• Given (connected) graph \(G(V,E) \), a spanning tree \(T(V',E') \):
 › Is a subgraph of \(G \); that is, \(V' \subseteq V \), \(E' \subseteq E \).
 › Spans the graph \((V' = V) \)
 › Forms a tree (no cycle);
 › So, \(E' \) has \(|V| - 1\) edges
Minimum Spanning Trees

- Edges are weighted: find minimum cost spanning tree
- Applications
 - Find cheapest way to wire your house
 - Find minimum cost to send a message on the Internet
Strategy for Minimum Spanning Tree

• For any spanning tree T, inserting an edge e_{new} not in T creates a cycle

• But
 › Removing any edge e_{old} from the cycle gives back a spanning tree
 › If e_{new} has a lower cost than e_{old} we have progressed!
Strategy

• Strategy for construction:
 › Add an edge of minimum cost that does not create a cycle (greedy algorithm)
 › Repeat $|V| - 1$ times
 › Correct since if we could replace an edge with one of lower cost, the algorithm would have picked it up
Two Algorithms

• Prim: (build tree incrementally)
 › Pick lower cost edge connected to known (incomplete) spanning tree that does not create a cycle and expand to include it in the tree

• Kruskal: (build forest that will finish as a tree)
 › Pick lowest cost edge not yet in a tree that does not create a cycle. Then expand the set of included edges to include it. (It will be somewhere in the forest.)
Prim’s algorithm

Starting from empty T, choose a vertex at random and initialize

\[V = \{A\}, E' = \{\} \]
Prim’s algorithm

Choose the vertex \(u \) not in \(V \) such that edge weight from \(u \) to a vertex in \(V \) is minimal (greedy!)

\(V=\{A, C\} \quad E'= \{(A, C)\} \)
Prim’s algorithm

Repeat until all vertices have been chosen

Choose the vertex u not in V such that edge weight from v to a vertex in V is minimal (greedy!)

$V = \{A, C, D\}$ $E' = \{(A, C), (C, D)\}$

$V = \{A, C, D, E\}$ $E' = \{(A, C), (C, D), (D, E)\}$

\ldots

$V = \{A, C, D, E, B, F, G\}$

$E' = \{(A, C), (C, D), (D, E), (E, B), (B, F), (E, G)\}$
Prim’s algorithm
Prim’s algorithm

A

B

C

D

E

F

G

10
1
8
3
5
1
6

1
1
6
3
4
2
4
6

3/6/2006 CSE 373 AU 05 - Minimum Spanning Trees
Prim’s algorithm
Prim’s algorithm

A

B

C

D

E

F

G

10
10

1
1

8
8

5
5

3
3

4
4

2
2

6
6

1
1
Prim’s algorithm

Repeat until all vertices have been chosen

Final Cost: $1 + 3 + 4 + 1 + 1 + 6 = 16$
Prim’s Algorithm Implementation

• Assume adjacency list representation

 Initialize connection cost of each node to “inf” and “unmark” them
 Choose one node, say v and set cost[v] = 0 and prev[v] = 0
 While they are unmarked nodes
 Select the unmarked node u with minimum cost; mark it
 For each unmarked node w adjacent to u
 if cost(u,w) < cost(w) then cost(w) := cost(u,w)
 prev[w] = u
Prim’s algorithm Analysis

- If the “Select the unmarked node u with minimum cost” is done with binary heap then $O((n+m) \log n)$
Kruskal’s Algorithm

- Select edges in order of increasing cost
- Accept an edge to expand tree or forest only if it does not cause a cycle
- Implementation using adjacency list, priority queues and disjoint sets
Kruskal’s Algorithm

Initialize a forest of trees, each tree being a single node
Build a priority queue of edges with priority being lowest cost
Repeat until |V| - 1 edges have been accepted {

 Deletemin edge from priority queue
 If it forms a cycle then discard it
 else accept the edge – It will join 2 existing trees yielding a larger tree and reducing the forest by one tree

}

The accepted edges form the minimum spanning tree
Detecting Cycles

- If the edge to be added \((u,v)\) is such that vertices \(u\) and \(v\) belong to the same tree, then by adding \((u,v)\) you would form a cycle
 - Therefore to check, \(\text{Find}(u)\) and \(\text{Find}(v)\). If they are the same discard \((u,v)\)
 - If they are different \(\text{Union}(\text{Find}(u),\text{Find}(v))\)
Properties of trees in K’s algorithm

• Vertices in different trees are disjoint
 › True at initialization and Union won’t modify the fact for remaining trees

• Trees form equivalent classes under the relation “is connected to”
 › \(u\) connected to \(u\) (reflexivity)
 › \(u\) connected to \(v\) implies \(v\) connected to \(u\) (symmetry)
 › \(u\) connected to \(v\) and \(v\) connected to \(w\) implies a path from \(u\) to \(w\) so \(u\) connected to \(w\) (transitivity)
K’s Algorithm Data Structures

• Adjacency list for the graph
 › To perform the initialization of the data structures below

• Disjoint Set ADT’s for the trees (recall Up tree implementation of Union-Find)

• Binary heap for edges
Example
Initialization

Initially, Forest of 6 trees

\[F = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{F\}\} \]

Edges in a heap (not shown)
Step 1

Select edge with lowest cost (B,E)
Find(B) = B, Find(E) = E
Union(B,E)
F = \{\{A\},\{B,E\},\{C\},\{D\},\{F\}\}
1 edge accepted
Step 2

Select edge with lowest cost (B,F)
Find(B) = B, Find(F) = F
Union(B,F)
F = \{
{A},
{B,E,F},
{C},
{D}
\}
2 edges accepted
Step 3

Select edge with lowest cost (A,C)

Find(A) = A, Find (C) = C

Union(A,C)

F= \{\{A,C\},\{B,E,F\},\{D\}\}

3 edges accepted
Step 4

Select edge with lowest cost (E,F)

Find(E) = B, Find (F) = B

Do nothing

F= {{A,C},{B,E,F},{D}}

3 edges accepted
Step 5

Select edge with lowest cost (C,D)

Find(C) = A, Find (D) = D

Union(A,D)

F = \{\{A,C,D\},\{B,E,F\}\}

4 edges accepted
Step 6

Select edge with lowest cost (D,E)
Find(D) = A, Find (E) = B
Union(A,B)
F= \{\{A,C,D,B,E,F\}\}
5 edges accepted : end
Total cost = 10

Although there is a unique spanning tree in this example, this is not generally the case
Kruskal’s Algorithm Analysis

- Initialize forest $O(n)$
- Initialize heap $O(m)$, $m = |E|$
- Loop performed m times
 - In the loop one deleteMin $O(\log m)$
 - Two Find, each $O(\log n)$
 - One Union (at most) $O(1)$
- So worst case $O(m \log m) = O(m \log n)$
Time Complexity Summary

• Recall that \(m = |E| = O(V^2) = O(n^2) \)
• Prim’s runs in \(O((n+m) \log n) \)
• Kruskal runs in \(O(m \log m) = O(m \log n) \)
• In practice, Kruskal has a tendency to run faster since graphs might not be dense and not all edges need to be looked at in the deleteMin operations