
Transitive Closure and all paths
Shortest Paths

CSE 373
Data Structures

Tr. Clos 2

All Pairs Shortest Path

• Given an edge weighted directed graph G =
(V,E) find for all u,v in V the length of the
shortest path from u to v. Use matrix
representation.

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

1 2 3 4 5 6 7
1 0 2 : 1 : : :
2 : 0 : 3 10 : :
3 4 : 0 : : 5 :
4 : : 2 0 2 8 4
5 : : : : 0 : 6
6 : : : : : 0 :
7 : : : : : 1 0

C

: = infinity

Tr. Clos 3

A (simpler) Related Problem:
Transitive Closure

• Given a digraph G(V,E) the transitive
closure is a digraph G’(V’,E’) such that
› V’ = V (same set of vertices)
› If (vi, vi+1,…,vk) is a path in G, then (vi, vk)

is an edge of E’

Tr. Clos 4

Unweighted Digraph Boolean
Matrix Representation

• C is called the connectivity matrix

1 2 3 4 5 6 7
1 0 1 0 1 0 0 0
2 0 0 0 1 1 0 0
3 1 0 0 0 0 1 0
4 0 0 1 0 1 1 1
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0

C
1 2

3 4 5

6 7

Tr. Clos 5

Transitive Closure

1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1
5 0 0 0 0 0 1 1
6 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0

C
1 2

3 4 5

6 7
On the graph, we show only the edges

added with 1 as origin. The matrix represents

the full transitive closure.

Tr. Clos 6

Finding Paths of Length 2

Length2 { //Initialization of C2[i,j]
for k = 1 to n // to all 0’s not shown
for i = 1 to n do
for j = 1 to n do

C2[i,j] := C2[i,j] ∪ (C[i,k] ∩ C[k,j]);
}
where ∩ is Boolean And (&&) and ∪ is Boolean OR (||)
This means if there is an edge from i to k
AND an edge from k to j, then there is a path
of length 2 between i and j.
Column k (C[i,k]) represents the predecessors of k
Row k (C[k,j]) represents the successors of k

Tr. Clos 7

Paths of Length 2
1 2 3 4 5 6 7

1 0 1 0 1 0 0 0
2 0 0 0 1 1 0 0
3 1 0 0 0 0 1 0
4 0 0 1 0 1 1 1
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0

C

1 2

3 4 5

6 7

1 2 3 4 5 6 7
1 0 0 1 1 1 1 1
2 0 0 1 0 1 1 1
3 0 1 0 1 0 0 0
4 1 0 0 0 0 1 1
5 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0

C2

Time O(n3)

Tr. Clos 8

Transitive Closure

• Union of paths of length 0, length 1,
length 2, …, length n-1.
› Time complexity n * O(n3) = O(n4)

• There exists a better (O(n3)) algorithm:
Warshall’s algorithm

Tr. Clos 9

Warshall Algorithm (1962)

TransitiveClosure {
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

C [i,j] := C[i,j] ∪ (C[i,k] ∩ C[k,j]);
}

where C[i,j] is the original connectivity matrix

Tr. Clos 10

Proof of Correctness

• After the k-th time through the loop,
C[i,j] =1 if there is a path from i to j that
only passes through vertices numbered
1,2,…,k (except for the initial edges)

• Base case: k = 1. C [i,j] = 1 for the initial
connectivity matrix (path of length 0)
and C [i,j] = 1 if there is a path (i,1,j)

Tr. Clos 11

Cloud Argument

Vertices numbered
1,2,…,k-1

k

i j

Ck-1(i,k) Ck-1(k,j)

Ck(i,j)

Tr. Clos 12

Inductive Step

• Assume true for k-1.
› All paths from i to j that only go through

vertices 1,2, …, k do not go through vertex
k at all.

• Ck[i,j] = Ck-1[i,j] (Ck[i,j] is result after k passes)
› A path from i to j that goes through

(vertices 1,2, …, k must go through vertex
k.

• Ck[i,j] = Ck-1[i,k] + Ck-1[k,j]

Tr. Clos 13

Back to Weighted graphs:
Matrix Representation

• C[i,j] = the cost of the edge (i,j)
› C[i,i] = 0 because no cost to stay where you are
› C[i,j] = infinity (:) if no edge from i to j.

1 2 3 4 5 6 7
1 0 2 : 1 : : :
2 : 0 : 3 10 : :
3 4 : 0 : : 5 :
4 : : 2 0 2 8 4
5 : : : : 0 : 6
6 : : : : : 0 :
7 : : : : : 1 0

C

Tr. Clos 14

Floyd – Warshall Algorithm

All_Pairs_Shortest_Path {
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

C[i,j] := min(C[i,j], C[i,k] + C[k,j]);
}

Note x + : = : by definition

On termination C[i,j] is the length of the shortest path from i to j.

Tr. Clos 15

The Computation
1 2 3 4 5 6 7

1 0 2 : 1 : : :
2 : 0 : 3 10 : :
3 4 : 0 : : 5 :
4 : : 2 0 2 8 4
5 : : : : 0 : 6
6 : : : : : 0 :
7 : : : : : 1 0

C 1 2 3 4 5 6 7
1 0 2 3 1 3 6 5
2 9 0 5 3 5 8 7
3 4 6 0 5 4 5 6
4 6 8 2 0 2 5 4
5 : : : : 0 7 6
6 : : : : : 0 :
7 : : : : : 1 0

C

v1

v7v6

v2

v5v3 v4

4 1

2

103

64

22

85

1

Tr. Clos 16

Proof of Correctness

• After the k-th time through the loop C[i,j]
is the length of the shortest path that
only passes through vertices numbered
1,2,…,k.
› Let Ck[i,j] be C[i,j] after k time through the

loop.
• Base case: k = 0. C0[i,j] is the cost of

an edge that does not pass through any
vertices.

Tr. Clos 17

Inductive Step

• Assume true for k-1.
› A shortest path from i to j that only goes

through vertices 1,2, …, k does not go
through vertex k at all.

• Ck[i,j] = Ck-1[i,j]
› All shortest paths from i to j that only go

through vertices 1,2, …, k must go through
vertex k.

• Ck[i,j] = Ck-1[i,k] + Ck-1[k,j]

Tr. Clos 18

Cloud Argument

Vertices numbered
1,2,…,k-1

k

i j

Ck-1(i,k) Ck-1(k,j)

Ck(i,j)

Tr. Clos 19

Time Complexity of All Pairs
Shortest Path

• n is the number of vertices
• Three nested loops. O(n3)

› Shortest paths can be found too
• Repeated Dijkstra’s algorithm

› O(n(n +m)log n) (= O(n3 log n) for dense graphs).
› Run Dijkstra starting at each vertex.
› Dijkstra also gives the shortest paths not just their

lengths.

