
Transitive Closure and all paths 
Shortest Paths

CSE 373
Data Structures
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All Pairs Shortest Path

• Given an edge weighted directed graph G = 
(V,E) find for all u,v in V the length of the 
shortest path from u to v.  Use matrix 
representation.
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1  2  3  4  5  6  7
1  0  2  :  1  :  :  :
2  :  0  :  3 10  :  :
3  4  :  0  :  :  5  :
4  :  :  2  0  2  8  4
5  :  :  :  :  0  :  6 
6  :  :  :  :  :  0  : 
7  :  :  :  :  :  1  0

C

: = infinity
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A (simpler) Related Problem: 
Transitive Closure

• Given a digraph G(V,E) the transitive 
closure is a digraph G’(V’,E’) such that
› V’ = V (same set of vertices)
› If (vi, vi+1,…,vk) is a path in G, then (vi, vk)  

is an edge of E’
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Unweighted Digraph Boolean 
Matrix Representation

• C is called the connectivity matrix

1  2  3  4  5  6  7
1  0  1  0  1  0  0  0
2  0  0  0  1  1  0  0
3  1  0  0  0  0  1  0
4  0  0  1  0  1  1  1
5  0  0  0  0  0  0  1 
6  0  0  0  0  0  0  0 
7  0  0  0  0  0  1  0

C
1 2

3 4 5

6 7
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Transitive Closure

1  2  3  4  5  6  7
1  1  1 1  1 1  1  1
2  1  1  1 1  1  1  1
3  1  1  1  1  1 1  1
4  1  1 1  1 1  1  1
5  0  0  0  0  0  1 1 
6  0  0  0  0  0  0  0 
7  0  0  0  0  0  1  0

C
1 2

3 4 5

6 7
On the graph, we show only the edges

added with 1 as origin. The matrix represents

the full transitive closure.
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Finding Paths of Length 2

Length2 {        //Initialization of C2[i,j]
for k = 1 to n   // to all 0’s not shown
for i = 1 to n do
for j = 1 to n do

C2[i,j] := C2[i,j] ∪ (C[i,k] ∩ C[k,j]);
}
where ∩ is Boolean And (&&) and ∪ is Boolean OR (||)
This means if there is an edge from i to k
AND an edge from k to j, then there is a path
of length 2 between i and j. 
Column k (C[i,k]) represents the predecessors of k
Row k (C[k,j]) represents the successors of k
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Paths of Length 2
1  2  3  4  5  6  7

1  0  1  0  1  0  0  0
2  0  0  0  1  1  0  0
3  1  0  0  0  0  1  0
4  0  0  1  0  1  1  1
5  0  0  0  0  0  0  1 
6  0  0  0  0  0  0  0 
7  0  0  0  0  0  1  0

C

1 2

3 4 5

6 7

1  2  3  4  5  6  7
1  0  0  1  1  1  1  1
2  0  0  1  0  1  1  1
3  0  1  0  1  0  0  0
4  1  0  0  0  0  1  1
5  0  0  0  0  0  1  0
6  0  0  0  0  0  0  0 
7  0  0  0  0  0  0  0

C2

Time O(n3)
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Transitive Closure

• Union of paths of length 0, length 1, 
length 2, …, length n-1.
› Time complexity n * O(n3) =  O(n4) 

• There exists a better (O(n3) ) algorithm: 
Warshall’s algorithm
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Warshall Algorithm (1962)

TransitiveClosure {
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

C [i,j] := C[i,j] ∪ (C[i,k] ∩ C[k,j]);
}

where C[i,j] is the original connectivity matrix
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Proof of Correctness

• After the k-th time through the loop, 
C[i,j] =1 if there is a path from i to j that 
only passes through vertices numbered 
1,2,…,k  (except for the initial edges)

• Base case: k = 1.  C [i,j] = 1 for the initial 
connectivity matrix (path of length 0) 
and C [i,j] = 1 if there is a path (i,1,j)
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Cloud Argument

Vertices numbered
1,2,…,k-1

k

i j

Ck-1(i,k) Ck-1(k,j)

Ck(i,j)
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Inductive Step

• Assume true for k-1.
› All paths from i to j that only go through 

vertices 1,2, …, k do not go through vertex 
k at all.

• Ck[i,j] = Ck-1[i,j] (Ck[i,j]  is result after k passes)
› A path from i to j that goes through 

(vertices 1,2, …, k must go through vertex 
k.

• Ck[i,j] = Ck-1[i,k] + Ck-1[k,j]
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Back to Weighted graphs: 
Matrix Representation

• C[i,j] = the cost of the edge (i,j)
› C[i,i] = 0 because no cost to stay where you are
› C[i,j] = infinity (:) if no edge from i to j.

1  2  3  4  5  6  7
1  0  2  :  1  :  :  :
2  :  0  :  3 10  :  :
3  4  :  0  :  :  5  :
4  :  :  2  0  2  8  4
5  :  :  :  :  0  :  6 
6  :  :  :  :  :  0  : 
7  :  :  :  :  :  1  0

C
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Floyd – Warshall Algorithm

All_Pairs_Shortest_Path {
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

C[i,j] := min(C[i,j], C[i,k] + C[k,j]);
}

Note x + : = : by definition

On termination C[i,j] is the length of the shortest path from i to j.
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The Computation
1  2  3  4  5  6  7

1  0  2  :  1  :  :  :
2  :  0  :  3 10  :  :
3  4  :  0  :  :  5  :
4  :  :  2  0  2  8  4
5  :  :  :  :  0  :  6 
6  :  :  :  :  :  0  : 
7  :  :  :  :  :  1  0

C 1  2  3  4  5  6  7
1  0  2  3  1  3  6  5
2  9  0  5  3  5  8  7
3  4  6  0  5  4  5  6
4  6  8  2  0  2  5  4
5  :  :  :  :  0  7  6 
6  :  :  :  :  :  0  : 
7  :  :  :  :  :  1  0

C
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Proof of Correctness

• After the k-th time through the loop C[i,j] 
is the length of the shortest path that 
only passes through vertices numbered 
1,2,…,k. 
› Let Ck[i,j] be C[i,j] after k time through the 

loop.
• Base case: k = 0.  C0[i,j] is the cost of 

an edge that does not pass through any 
vertices.  
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Inductive Step

• Assume true for k-1.
› A shortest path from i to j that only goes 

through vertices 1,2, …, k does not go 
through vertex k at all.

• Ck[i,j] = Ck-1[i,j]
› All shortest paths from i to j that only go 

through vertices 1,2, …, k must go through 
vertex k.

• Ck[i,j] = Ck-1[i,k] + Ck-1[k,j]
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Cloud Argument

Vertices numbered
1,2,…,k-1

k

i j

Ck-1(i,k) Ck-1(k,j)

Ck(i,j)
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Time Complexity of All Pairs 
Shortest Path

• n is the number of vertices
• Three nested loops. O(n3)

› Shortest paths can be found too
• Repeated Dijkstra’s algorithm 

› O(n(n +m)log n) (= O(n3 log n) for dense graphs).
› Run Dijkstra starting at each vertex.
› Dijkstra also gives the shortest paths not just their 

lengths.


