Minimum Spanning Trees

CSE 373
Data Structures
Reading

• Chapter 13
 › Section 13.7
Spanning Tree

• Given (connected) $G(V,E)$ a spanning tree $T(V',E')$:
 › Spans the graph ($V' = V$)
 › Forms a tree (no cycle); E' has $|V| - 1$ edges
Minimum Spanning Tree

• Edges are weighted: find minimum cost spanning tree

• Applications
 › Find cheapest way to wire your house
 › Find minimum cost to send a message on the Internet
Basic Strategy

• Strategy:
 › Add an edge of minimum cost that does not create a cycle (greedy algorithm)
 › Repeat |V| -1 times
 › Correct since if we could replace an edge with one of lower cost, the algorithm would have picked it up
Two Algorithms

• Prim: (build tree incrementally)
 › Pick lower cost edge connected to known (incomplete) spanning tree that does not create a cycle and expand to include it in the tree

• Kruskal: (build forest that will finish as a tree)
 › Pick lower cost edge not yet in a tree that does not create a cycle and expand to include it somewhere in the forest
Prim and Kruskal et al.

Robert Prim (1921-) Rediscover algorithms (1957)

Joseph Kruskal (1929-1965)

Published in Czech in 1934 by Jarnik (1897-1970)

Based on Otakar Boruvka (1899-1995) MST (1926) to cover electrical network in Bohemia
Starting from empty T, choose a vertex at random and initialize

$V = \{1\}, \ E' = \{}$
Prim’s algorithm

Choose the vertex u not in V such that edge weight from u to a vertex in V is minimal (greedy!)

$V=\{1,3\}$ $E'=\{1,3\}$
Prim’s algorithm

Repeat until all vertices have been chosen

Choose the vertex u not in V such that edge weight from v to a vertex in V is minimal (greedy!)

V = \{1,3,4\} \ E’ = \{(1,3),(3,4)\}
V = \{1,3,4,5\} \ E’ = \{(1,3),(3,4),(4,5)\}
......
V = \{1,3,4,5,2,6\}
E’ = \{(1,3),(3,4),(4,5),(5,2),(2,6)\}
Prim’s algorithm

Repeat until all vertices have been chosen

\[V = \{1, 3, 4, 5, 2, 6\} \]
\[E' = \{(1, 3), (3, 4), (4, 5), (5, 2), (2, 6)\} \]

Final Cost: \(1 + 3 + 4 + 1 + 1 = 10\)
Prim’s Algorithm Implementation

• Assume adjacency list representation

 Initialize connection cost of each node to “inf” and “unmark” them
 Choose one node, say v and set cost[v] = 0 and prev[v] =0
 While they are unmarked nodes
 Select the unmarked node u with minimum cost; mark it
 For each unmarked node w adjacent to u
 if cost(u,w) < cost(w) then cost(w) := cost (u,w)
 prev[w] = u

• Looks a lot like Dijkstra’s algorithm!
Prim’s algorithm Analysis

• Like Dijkstra’s algorithm
• If the “Select the unmarked node u with minimum cost” is done with binary heap then $O((n+m)\log n)$
Kruskal’s Algorithm

- Select edges in order of increasing cost
- Accept an edge to expand tree or forest only if it does not cause a cycle
- Implementation using adjacency list, priority queues and disjoint sets
Kruskal’s Algorithm

Initialize a forest of trees, each tree being a single node
Build a priority queue of edges with priority being lowest cost
Repeat until |V| - 1 edges have been accepted {
 Deletemin edge from priority queue
 If it forms a cycle then discard it
 else accept the edge – It will join 2 existing trees yielding a larger tree and reducing the forest by one tree
}
The accepted edges form the minimum spanning tree
Detecting Cycles

• If the edge to be added \((u,v)\) is such that vertices \(u\) and \(v\) belong to the same tree, then by adding \((u,v)\) you would form a cycle
 › Therefore to check, \(\text{Find}(u)\) and \(\text{Find}(v)\). If they are the same discard \((u,v)\)
 › If they are different \(\text{Union}(\text{Find}(u), \text{Find}(v))\)
Properties of trees in K’s algorithm

- Vertices in different trees are disjoint
 - True at initialization and Union won’t modify the fact for remaining trees
- Trees form equivalent classes under the relation “is connected to”
 - u connected to u (reflexivity)
 - u connected to v implies v connected to u (symmetry)
 - u connected to v and v connected to w implies a path from u to w so u connected to w (transitivity)
K’s Algorithm Data Structures

• Adjacency list for the graph
 › To perform the initialization of the data structures below
• Disjoint Set ADT’s for the trees (recall Up tree implementation of Union-Find)
• Binary heap for edges
Example
Initialization

Initially, Forest of 6 trees

F = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}

Edges in a heap (not shown)
Step 1

Select edge with lowest cost (2,5)
Find(2) = 2, Find (5) = 5
Union(2,5)
F= {{1},{2,5},{3},{4},{6}}
1 edge accepted
Step 2

Select edge with lowest cost (2,6)
Find(2) = 2, Find (6) = 6
Union(2,6)
F = \{\{1\},\{2,5,6\},\{3\},\{4\}\}
2 edges accepted
Step 3

Select edge with lowest cost (1,3)
Find(1) = 1, Find (3) = 3
Union(1,3)
F= \{\{1,3\},\{2,5,6\},\{4\}\}
3 edges accepted
Step 4

Select edge with lowest cost (5,6)
Find(5) = 2, Find (6) = 2
Do nothing
F = \{\{1,3\},\{2,5,6\},\{4\}\}
3 edges accepted
Step 5

Select edge with lowest cost (3,4)
Find(3) = 1, Find (4) = 4
Union(1,4)
F= {{1,3,4},{2,5,6}}
4 edges accepted
Step 6

Select edge with lowest cost (4,5)
Find(4) = 1, Find (5) = 2
Union(1,2)
F = \{1,3,4,2,5,6\}

5 edges accepted : end
Total cost = 10

Although there is a unique spanning tree in this example, this is not generally the case
Kruskal’s Algorithm Analysis

- Initialize forest $O(n)$
- Initialize heap $O(m)$, $m = |E|$
- Loop performed m times
 - In the loop one Deletemin $O(\log m)$
 - Two Find, each $O(\log n)$
 - One Union (at most) $O(1)$
- So worst case $O(m\log m) = O(m\log n)$
Time Complexity Summary

• Recall that \(m = |E| = O(V^2) = O(n^2) \)
• Prim’s runs in \(O((n+m) \log n) \)
• Kruskal’s runs in \(O(m \log m) = O(m \log n) \)
• In practice, Kruskal has a tendency to run faster since graphs might not be dense and not all edges need to be looked at in the Deletemin operations