Directed Graph Algorithms

CSE 373
Data Structures
Readings

• Reading Chapter 13
 › Sections 13.3 and 13.4
Problem: Find an order in which all these courses can be taken.

Example: $142 \rightarrow 143 \rightarrow 378$
$\rightarrow 370 \rightarrow 321 \rightarrow 341 \rightarrow 322$
$\rightarrow 326 \rightarrow 421 \rightarrow 401$

In order to take a course, you must take all of its prerequisites first.
Topological Sort

Given a digraph $G = (V, E)$, find a linear ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering
Any linear ordering in which all the arrows go to the right is a valid solution.

Note that F can go anywhere in this list because it is not connected. Also the solution is not unique.
Topo sort – invalid solution

Any linear ordering in which an arrow goes to the left is not a valid solution.
Paths and Cycles

- Given a digraph $G = (V,E)$, a **path** is a sequence of vertices v_1,v_2, \ldots,v_k such that:
 - (v_i,v_{i+1}) in E for $1 < i < k$
 - path **length** = number of edges in the path
 - path **cost** = sum of costs of each edge

- A path is a **cycle** if:
 - $k > 1; v_1 = v_k$

- G is **acyclic** if it has no cycles.
Only acyclic graphs can be topo. sorted

- A directed graph with a cycle cannot be topologically sorted.
Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero
Step 1: Identify vertices that have no incoming edges
- If no such vertices, graph has only cycle(s) (cyclic graph)
- Topological sort not possible – Halt.

Example of a cyclic graph
Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
- Select one such vertex

Select

![Graph Diagram]

Digraphs 11
Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.
Continue until done

Repeat Step 1 and Step 2 until graph is empty

Select
Select B. Copy to sorted list. Delete B and its edges.
Select C. Copy to sorted list. Delete C and its edges.
Select D. Copy to sorted list. Delete D and its edges.
E, F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.
Done

A → B → C → D → E → F

A, B, C, D, E, F

Digraphs
Assume adjacency list representation

Implementation

Translation array

Digraphs
Calculate In-degrees

In-Degree array; or add a field to array A
Calculate In-degrees

for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do
 x := A[i];
 while x ≠ null do
 D[x.value] := D[x.value] + 1;
 x := x.next;
 endwhile
endfor
Maintaining Degree 0 Vertices

Key idea: Initialize and maintain a *queue (or stack)* of vertices with In-Degree 0

Queue: 1 6

![Diagram](image.png)
Topo Sort using a Queue (breadth-first)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree becomes zero.
Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 (a) Dequeue and output a vertex
 (b) Reduce In-Degree of all vertices adjacent to it by 1
 (c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
Some Detail

Main Loop
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x];
 while y ≠ null do
 D[y.value] := D[y.value] - 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile
Topological Sort Analysis

- Initialize In-Degree array: $O(|V| + |E|)$
- Initialize Queue with In-Degree 0 vertices: $O(|V|)$
- Dequeue and output vertex:
 - $|V|$ vertices, each takes only $O(1)$ to dequeue and output: $O(|V|)$
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 - $O(|E|)$
- For input graph $G=(V,E)$ run time = $O(|V| + |E|)$
 - Linear time!
Topo Sort using a Stack (depth-first)

After each vertex is output, when updating In-Degree array, *push any vertex whose In-Degree becomes zero*

Stack

Output

Digraphs