Reading

• Reading Chapter 11
 › Section 11.6
Sets

- Set: Collection (unordered) of distinct objects
- Union of two sets
 - A U B = {x: x is in A or x is in B}
- Intersection of two sets
 - A ∩ B = {x: x is in A and x is in B}
- Subtraction of two sets
 - A – B = {x: x is in A and x is not in B}
Set ADT

- Make a set
- Union of a set with another
- Intersection of a set with another
- Subtraction of a set from another
Set: simple implementation

- Store elements in a list, i.e., an ordered sequence
 - There must be a consistent total order among elements of the various sets that will be dealt with
- All methods defined previously can be done in $O(n)$
 - Not very interesting!
Disjoint Sets and Partitions

• Two sets are disjoint if their intersection is the empty set
• A partition is a collection of disjoint sets
Equivalence Relations

• A relation \mathcal{R} is defined on set S if for every pair of elements $a, b \in S$, $a \mathcal{R} b$ is either true or false.

• An equivalence relation is a relation \mathcal{R} that satisfies the 3 properties:
 › Reflexive: $a \mathcal{R} a$ for all $a \in S$
 › Symmetric: $a \mathcal{R} b$ iff $b \mathcal{R} a$; $a, b \in S$
 › Transitive: $a \mathcal{R} b$ and $b \mathcal{R} c$ implies $a \mathcal{R} c$
Equivalence Classes

• Given an equivalence relation R, decide whether a pair of elements $a, b \in S$ is such that $a R b$.

• The equivalence class of an element a is the subset of S of all elements related to a.

• Equivalence classes are disjoint sets.
Dynamic Equivalence Problem

• Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes

• Requires two operations:
 › **Find** the equivalence class (set) of a given element
 › **Union** of two sets

• It is a **dynamic** (on-line) problem because the sets change during the operations and **Find** must be able to cope!
Methods for Partitions

- **makeSet(x)**: creates a single set containing the element x and its “name”
- **Union(A,B)**: returns the new set $A \cup B$ and destroys the old A and the old B
- **Find(p)**: returns the “name” of the set that contains p
Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
- Each set has a unique name, one of its members
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
Union

• Union(x,y) – take the union of two sets named x and y
 › \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
 › Union(5,1)
 \{3,5,7,1,6\}, \{4,2,8\}, \{9\}. \{
Find

- Find(x) – return the name of the set containing x.
 - \{3,5,7,1,6\}, \{4,2,8\}, \{9\},
 - Find(1) = 5
 - Find(4) = 8
An Application

• Build a random maze by erasing edges.
An Application (ct’d)

- Pick Start and End

```
  Start

  ___________
  |         |
  |         |
  |         |
  |         |
  |         |
  |         |
  |         |
  |         |
  |_________
    End
```
An Application (ct’d)

• Repeatedly pick random edges to delete.
Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.
A Cycle (we don’t want that)
A Good Solution
Good Solution : A Hidden Tree
Number the Cells

We have disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \ldots \{36\} \}$ each cell is unto itself. We have all possible edges $E = \{ (1,2), (1,7), (2,8), (2,3), \ldots \}$ 60 edges total.

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Sets 21
Basic Algorithm

- $S =$ set of sets of connected cells
- $E =$ set of edges
- Maze = set of maze edges initially empty

While there is more than one set in S
 pick a random edge (x,y) and remove from E
 $u := \text{Find}(x); \ v := \text{Find}(y)$;
 if $u \neq v$ then
 $\text{Union}(u,v)$ //knock down the wall between the cells (cells in
 //the same set are connected)
 else
 add (x,y) to Maze //don’t remove because there is already
 //a path between x and y

All remaining members of E together with Maze form the maze
Example Step

Pick (8,14)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Sets

S

{1,2,\,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
...
{22,23,24,29,30,32,33,34,35,36}

23
Example

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32 33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32 33,34,35,36}
Example

Pick (19,20)

Start

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

End

S

{1,2,7,8,9,13,19,14,20,26,27}

{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}

Sets

{22,23,24,29,39,32,33,34,35,36}
Example at the End

\[
\begin{array}{cccccc}
\text{Start} & 1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 10 & 11 & 12 & \\
13 & 14 & 15 & 16 & 17 & 18 & \\
19 & 20 & 21 & 22 & 23 & 24 & \\
25 & 26 & 27 & 28 & 29 & 30 & \\
31 & 32 & 33 & 34 & 35 & 36 & \text{End}
\end{array}
\]

\[S = \{1,2,3,4,5,6,7,\ldots,36\}\]

Sets
Up-Tree representation of a set

Initial state

Roots are the names of each set.
Find Operation

• Find(x) follow x to the root and return the root

Find(6) = 7
Union Operation

- Union(i,j) - assuming i and j roots, point i to j.

Union(1,7)
Simple Implementation

- Array of indices (Up[i] is parent of i)

<table>
<thead>
<tr>
<th>up</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

Up [x] = 0 means x is a root.
Union

Union(up[] : integer array, x,y : integer) : {
 //precondition: x and y are roots/
 Up[x] := y
}

Constant Time!
Recursive
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size/
if up[x] = 0 then return x
else return Find(up,up[x]);
}

Iterative
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size/
while up[x] ≠ 0 do
 x := up[x];
return x;
}
A Bad Case

Union(1,2)

Union(2,3)

Union(n-1,n)

Find(1) n steps!!
Weighted Union

- Weighted Union (weight = number of nodes)
 - Always point the smaller tree to the root of the larger tree

```
W-Union(1,7)
```

```
Sets
```
Example Again

1 2 3 \ldots n

Union(1,2)

2 3 \ldots n

Union(2,3)

1 \ldots n

Union(n-1,n)

Find(1) constant time
Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - Basis: $h = 0$. The up-tree has one node, $2^0 = 1$
 - Inductive step: Assume true for all $h' < h$.

\[
W(T_1) \geq W(T_2) > 2^{h-1}
\]

\[
W(T) \geq 2^{h-1} + 2^{h-1} = 2^h
\]
Analysis of Weighted Union

• Let T be an up-tree of weight n formed by weighted union. Let h be its height.
 • $n \geq 2^h$
 • $\log_2 n \geq h$
 • Find(x) in tree T takes $O(\log n)$ time.
• Can we do better?
Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions
Example of Worst Cast (cont’)

After \(n - 1 = \frac{n}{2} + \frac{n}{4} + \ldots + 1 \) Weighted Unions

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).

\[\log_2 n \]
Elegant Array Implementation

Can save the extra space by storing the complement of weight in the space reserved for the root.
Weighted Union

W-Union(i, j : index) {
 // i and j are roots //
 wi := weight[i];
 wj := weight[j];
 if wi < wj then
 up[i] := j;
 weight[j] := wi + wj;
 else
 up[j] := i;
 weight[i] := wi + wj;
}
Path Compression

• On a Find operation point all the nodes on the search path directly to the root.
Self-Adjustment Works

PC-Find(x)
Path Compression Find

PC-Find(i : index) {
 r := i;
 while up[r] ≠ 0 do //find root//
 r := up[r];
 if i ≠ r then //compress path//
 k := up[i];
 while k ≠ r do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
}
Example
Disjoint Union / Find with Weighted Union and PC

• Worst case time complexity for a W-Union is \(O(1) \) and for a PC-Find is \(O(\log n) \).

• Time complexity for \(m \geq n \) operations on \(n \) elements is \(O(m \log^* n) \) where \(\log^* n \) is a very slow growing function.
 › \(\log^* n < 7 \) for all reasonable \(n \). Essentially constant time per operation!
Amortized Complexity

• For disjoint union / find with weighted union and path compression.
 › average time per operation is essentially a constant.
 › worst case time for a PC-Find is O(log n).

• An individual operation can be costly, but over time the average cost per operation is not.