Sorting (Part II)

CSE 373
Data Structures
How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in $O(N \log N)$ best case running time
- Can we do any better?
- No, if sorting is comparison-based.
Sorting Model

• Basic assumption: we can only compare two elements at a time
 › we can only reduce the possible solution space by half each time we make a comparison
• Suppose you are given N elements
 › Assume no duplicates
• How many possible orderings can you get?
 › Example: a, b, c (N = 3)
Permutations

• How many possible orderings can you get?
 › Example: a, b, c (N = 3)
 › (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 › 6 orderings = 3\cdot2\cdot1 = 3! (i.e., “3 factorial”)
 › All the possible permutations of a set of 3 elements

• For N elements
 › N choices for the first position, (N-1) choices for the second position, …, (2) choices, 1 choice
 › N(N-1)(N-2)⋯(2)(1)= N! possible orderings
Decision Tree

The leaves contain all the possible orderings of a, b, c
Decision Trees

• A Decision Tree is a Binary Tree such that:
 › Each node = a set of orderings
 • i.e., the remaining solution space
 › Each edge = 1 comparison
 › Each leaf = 1 unique ordering
 › How many leaves for N distinct elements?
 • N!, i.e., a leaf for each possible ordering

• Only 1 leaf has the ordering that is the desired correctly sorted arrangement
Decision Trees and Sorting

- Every comparison-based sorting algorithm corresponds to a decision tree
 - Finds correct leaf by choosing edges to follow
 - i.e., by making comparisons
 - Each decision reduces the possible solution space by one half
- Run time is \geq maximum no. of comparisons
 - maximum number of comparisons is the length of the longest path in the decision tree, i.e. the height of the tree
Decision Tree Example

a < b < c, b < c < a, c < a < b, b < a < c, c < b < a

3! possible orders

actual order
How many leaves on a tree?

• Suppose you have a binary tree of height \(d \). How many leaves can the tree have?
 › \(d = 1 \) \(\rightarrow \) at most 2 leaves,
 › \(d = 2 \) \(\rightarrow \) at most 4 leaves, etc.
Lower bound on Height

• A binary tree of height d has at most 2^d leaves
 ‣ depth $d = 1 \rightarrow 2$ leaves, $d = 2 \rightarrow 4$ leaves, etc.
 ‣ Can prove by induction
• Number of leaves, $L \leq 2^d$
• Height $d \geq \log_2 L$
• The decision tree has $N!$ leaves
• So the decision tree has height $d \geq \log_2(N!)$
Upper Bounds and Lower Bounds

- \(f(n) \) is \(O(g(n)) \) means that \(f(n) \) does not grow any faster than \(g(n) \)
 - \(g(n) \) is an upper bound for \(f(n) \)
- \(f(n) \) is \(\Omega(g(n)) \) means that \(f(n) \) grows at least as fast as \(g(n) \)
 - \(g(n) \) is a lower bound for \(f(n) \)
 - \(f(n) \) is \(\Omega(g(n)) \) if \(g(n) \) is \(O(f(n)) \)
log(N!) is $\Omega(N \log N)$

$log(N!) = log(N \cdot (N - 1) \cdot (N - 2) \cdots (2) \cdot (1))$

$= log N + log(N - 1) + log(N - 2) + \cdots + log 2 + log 1$

$\geq log N + log(N - 1) + log(N - 2) + \cdots + log \frac{N}{2}$

$\geq \frac{N}{2} \log \frac{N}{2}$

$n! \approx \sqrt{2\pi n}(n/e)^n$

Sterling’s formula

$= \Omega(N \log N)$
$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is $\Omega(N \log N)$
- Can we do better if we don’t use comparisons?
Bucket Sort

- n Keys to sort in range $[0, N-1]$
- Have N buckets: bucket i will contain the elements with key value i
- Pass 1: place elements in their respective buckets: $O(n)$
- Pass 2: concatenate the N buckets: $O(n+N)$ since have to check empty buckets
- Needs extra space
- Good only if N not too large compared to n
Radix Sort: Sorting integers

- Historically goes back to the 1890 census.
- Radix sort = multi-pass bucket sort of integers in the range 0 to $B^P - 1$
- Bucket-sort from least significant to most significant “digit” (base B)
- Requires $P(B+N)$ operations where P is the number of passes (the number of base B digits in the largest possible input number).
- If P and B are constants then $O(N)$ time to sort!
Radix Sort Example

Input data

| 478 | 537 | 9 | 721 | 3 | 38 | 123 | 67 |

Bucket sort by 1’s digit

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>721</td>
<td>3</td>
<td>123</td>
<td>537</td>
<td>478</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After 1st pass

| | 721 | 3 | 123 | 537 | 67 | 478 | 38 | 9 |

This example uses decimal digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.
Radix Sort Example

After 1st pass

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>123</td>
<td>537</td>
<td>67</td>
<td>478</td>
<td>38</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Bucket sort by 10’s digit

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>09</td>
<td>721</td>
<td>123</td>
<td>537</td>
<td>38</td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After 2nd pass

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>721</td>
<td>123</td>
<td>537</td>
<td>38</td>
<td>67</td>
<td>478</td>
<td></td>
</tr>
</tbody>
</table>
Radix Sort Example

<table>
<thead>
<tr>
<th>After 2nd pass</th>
<th>Bucket sort by 100’s digit</th>
<th>After 3rd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>721</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>537</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>537</td>
</tr>
<tr>
<td>478</td>
<td></td>
<td>721</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>003</td>
<td>123</td>
<td>478</td>
<td>537</td>
<td>721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>067</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Invariant: after k passes the low order k digits are sorted.
Implementation Options

• Linked List
 › Linked List of data, bucket array of linked lists.
 › Concatenate lists for each pass.

• Array / Linked List
 › Array of data, bucket array of linked lists.

• Array / Array
 › Array of data, array for all buckets.
 › Requires counting.
Array / Array

Data Array Count Array Address Array Target Array

0 478 0 0 0 721
1 537 1 1 1 3
2 9 1 0 2 123
3 721 2 1 3 537
4 3 2 1 4 67
5 38 4 3 4 67
6 123 5 3 5 478
7 67 6 3 6 38

Bucket i ranges from add[i] to add[i+1]-1

add[0] := 0
add[i] := add[i-1] + count[i-1], i > 0

Sorting (prt II)
Array / Array

- Pass 1 (over A)
 › Calculate counts and addresses for 1st “digit”
- Pass 2 (over T)
 › Move data from A to T
 › Calculate counts and addresses for 2nd “digit”
- Pass 3 (over A)
 › Move data from T to A
 › Calculate counts and addresses for 3rd “digit”
- …
- In the end an additional copy may be needed.
Choosing Parameters for Radix Sort

- N number of integers – given
- m bit numbers - given
- B number of buckets
 - $B = 2^r$: power of 2 so that calculations can be done by shifting.
 - N/B not too small, otherwise too many empty buckets.
 - $P = m/r$ should be small.
- Example – 1 million 64 bit numbers. Choose $B = 2^{16} = 65,536$. $1 \text{ Million} / B \approx 15$ numbers per bucket. $P = 64/16 = 4$ passes.
Properties of Radix Sort

• Not in-place
 › needs lots of auxiliary storage.

• Stable
 › equal keys always end up in same bucket in the same order.

• Fast
 › $B = 2^r$ buckets on m bit numbers

$$O\left(\frac{m}{r}(n + 2^r)\right) \text{ time}$$
Internal versus External Sorting

• So far assumed that accessing A[i] is fast – Array A is stored in internal memory
 › Algorithms so far are good for internal sorting

• What if A is so large that it doesn’t fit in internal memory?
 › Data on disk
 › Delay in accessing A[i] – need to get many records (keys) at a time
Internal versus External Sorting

• Need sorting algorithms that minimize disk access time

 › External sorting – Basic Idea:
 • Load chunk of data into main memory, sort, store this “run” on disk
 • Use the Merge routine from Mergesort to merge runs
 • Repeat until you have only one run (one sorted chunk)
Summary of Sorting

• Sorting choices:
 › O(N^2) – Insertion Sort
 › O(N log N) average case running time:
 • Heapsort: In-place, not stable.
 • Mergesort: O(N) extra space, stable.