Sorting

CSE 373
Data Structures
Reading

• Reading Chapter 11
 › Sections 11.1 (a review)
 › Sections 11.2 to 11.5
Sorting

• Input: an array A of data records with a key value in each data record
 › Some sorting algorithms, e.g. Mergesort work also on linked lists
• The values must be “comparable”
 › For example: integers, strings
• Output: reorganize the elements of A such that
 • For any i and j, if $i < j$ then $A[i] \leq A[j]$
Consistent Ordering

• The comparison function must provide a consistent ordering on the set of possible keys
 › You can compare any two keys and get back an indication of \(a < b, a > b, \) or \(a = b \)
 › The comparison functions must be consistent
 • If \(\text{compare}(a,b) \) says \(a < b \), then \(\text{compare}(b,a) \) must say \(b > a \)
 • If \(\text{compare}(a,b) \) says \(a = b \), then \(\text{compare}(b,a) \) must say \(b = a \)
 • If \(\text{compare}(a,b) \) says \(a = b \), then \(\text{equals}(a,b) \) and \(\text{equals}(b,a) \) must say \(a = b \)
Why Sort?

- Sorting algorithms are among the most frequently used algorithms in computer science
- Allows binary search of an N-element array in $O(\log N)$ time
- Allows $O(1)$ time access to kth largest element in the array for any k
- Allows easy detection of any duplicates
Time

• How fast is the algorithm?
 › The definition of a sorted array A says that for any $i<j$, $A[i] < A[j]$
 › This means that you need to at least check on each element at the very minimum, i.e., at least $O(N)$
 › And you could end up checking each element against every other element, which is $O(N^2)$
 › The big question is: How close to $O(N)$ can you get?
Faster is better!
Space

• How much space does the sorting algorithm require in order to sort the collection of items?
 › Is copying needed? O(n) additional space
 › In-place sorting – no copying – O(1) additional space
 › Somewhere in between for “temporary”, e.g. O(logn) space
 › External memory sorting – data so large that does not fit in memory
Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
 - E.g. Phone book sorted by name. Now sort by county – is the list still sorted by name within each county?
 - Extremely important property for databases
 - A **stable sorting algorithm** is one which does not rearrange the order of duplicate keys
Example

Stable Sort

Unstable Sort
Bubble Sort

• “Bubble” elements to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i] > A[i+1]$
 › Bubble every element towards its correct position
 • last position has the largest element
 • then bubble every element except the last one towards its correct position
 • then repeat until done or until the end of the quarter, whichever comes first ...
Bubblesort

bubble(A[1..n]: integer array, n : integer): {
 i, j : integer;
 for i = 1 to n-1 do
 for j = 2 to n-i+1 do
 }

SWAP(a,b) : {
 t :integer;
 t:=a; a:=b; b:=t;
}
Put the largest element in its place

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>8</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>23</th>
<th>18</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>14</th>
</tr>
</thead>
</table>

larger value?

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>23</th>
<th>18</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>14</th>
</tr>
</thead>
</table>

swap

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>23</th>
<th>18</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>14</th>
</tr>
</thead>
</table>

swap

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>18</th>
<th>23</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>14</th>
</tr>
</thead>
</table>

swap

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>18</th>
<th>15</th>
<th>23</th>
<th>16</th>
<th>17</th>
<th>14</th>
</tr>
</thead>
</table>

swap

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>18</th>
<th>15</th>
<th>23</th>
<th>16</th>
<th>17</th>
<th>14</th>
</tr>
</thead>
</table>

swap

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>18</th>
<th>15</th>
<th>16</th>
<th>23</th>
<th>17</th>
<th>14</th>
</tr>
</thead>
</table>

swap

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>18</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>23</th>
<th>14</th>
</tr>
</thead>
</table>

swap

| 1 | 2 | 3 | 7 | 8 | 9 | 10 | 12 | 18 | 15 | 16 | 17 | 14 | 23 |
|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|
Bubble Sort: Just Say No

• “Bubble” elements to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i] > A[i+1]$
• We bubblize for $i=1$ to n (i.e., n times)
• Each bubblization is a loop that makes $n-i$ comparisons
• This is $O(n^2)$
Insertion Sort

• What if first \(k \) elements of array are already sorted?
 \[4, 7, 12, 5, 19, 16 \]

• We can shift the tail of the sorted elements list down and then \textit{insert} next element into proper position and we get \(k+1 \) sorted elements
 \[4, 5, 7, 12, 19, 16 \]
Insertion Sort

InsertionSort(A[1..N]: integer array, N: integer) {
 i, j, temp: integer ;
 for i = 2 to N {
 temp := A[i];
 j := i-1;
 while j > 1 and A[j-1] > temp {
 }
 A[j] = temp;
 }
}

• Is Insertion sort in place? Stable? Running time = ?
Insertion Sort Characteristics

• In place and Stable
• Running time
 › Worst case is $O(N^2)$
 • reverse order input
 • must copy every element every time
• Good sorting algorithm for almost sorted data
 › Each item is close to where it belongs in sorted order.
Inversions

- An inversion is a pair of elements in wrong order
 \(i < j\) but \(A[i] > A[j]\)
- By definition, a sorted array has no inversions
- So you can think of sorting as the process of removing inversions in the order of the elements
Inversions

• Our simple sorting algorithms so far swap adjacent elements (explicitly or implicitly) and remove just 1 inversion at a time
 ‣ Their running time is proportional to number of inversions in array

• Given N distinct keys, the maximum possible number of inversions is

\[
(n - 1) + (n - 2) + \ldots + 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}
\]
Inversions and Adjacent Swap Sorts

• "Average" list will contain half the max number of inversions = \(\frac{(n-1)n}{4} \)
 › So the average running time of Insertion sort is \(O(N^2) \)

• Any sorting algorithm that only swaps adjacent elements requires \(O(N^2) \) time because each swap removes only one inversion (lower bound)
“Divide and Conquer” Sorting algorithms

• Very important strategy in computer science:
 › Divide problem into smaller parts
 › Independently solve the parts
 › Combine these solutions to get overall solution

• **Idea 1**: Divide array into two halves, *recursively* sort left and right halves, then *merge* two halves → **Mergesort**

• **Idea 2**: Partition array into items that are “small” and items that are “large”, then recursively sort the two sets → **Quicksort**
Quicksort (1962)

- Due to Sir Tony Hoare (1934-)

Sorting
Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does
 - Partition array into left and right sub-arrays
 - Choose an element of the array, called pivot
 - the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - Recursively sort left and right sub-arrays
 - The elements “remain” in the array
“Four easy steps”

- To sort an array \(S \)
 1. If the number of elements in \(S \) is 0 or 1, then return. The array is sorted.
 2. Pick an element \(v \) in \(S \). This is the pivot value.
 3. Partition \(S-\{v\} \) into two disjoint subsets, \(S_1 = \{\text{all values } x \leq v\} \), and \(S_2 = \{\text{all values } x \geq v\} \).
 4. Return QuickSort(\(S_1 \)), \(v \), QuickSort(\(S_2 \))
The steps of QuickSort

1. Select pivot value
2. Partition S
3. QuickSort(S₁) and QuickSort(S₂)
4. Voila! S is sorted
Details, details

- Implementing the actual partitioning
- Picking the pivot
 ‣ want a value that will cause $|S_1|$ and $|S_2|$ to be non-zero, and close to equal in size if possible
- Choosing the order of the recursive calls
Quicksort Partitioning

- Need to partition the array into left and right sub-arrays
 - the elements in left sub-array are \leq pivot
 - elements in right sub-array are \geq pivot
- How do the elements get to the correct partition?
 - Choose an element from the array as the pivot
 - Make one pass through the rest of the array and swap as needed to put elements in partitions
Partitioning: Choosing the pivot

- One implementation (there are others) - median3
 - Median3 takes the median of leftmost, middle, and rightmost elements
 - An alternative is to choose the pivot randomly
 - Another alternative is to choose the first element (but can be very bad. Why?)
Median 3

- Find median, min and max of $A[\text{left}]$, $A[\text{right}]$ and $A[(\text{left}+\text{right})/2]$
- $A[\text{left}] = \text{min}$
- $A[\text{right}] = \text{max}$
- $A[\text{right}-1] = \text{median}$ (called pivot)
Partitioning in-place

Set pointers i and j to start and end of array except for pivot and last element

Increment i until you hit element $A[i] > \text{pivot}$
 - “while $A[i] < \text{pivot}$ then $i++$”

Decrement j until you hit element $A[j] < \text{pivot}$
 - “while $A[j] > \text{pivot}$ then $j--$”

Swap $A[i]$ and $A[j]$
 - “if $i < j$ then swap(A, i, j)”

Repeat until i and j cross

Swap pivot (at $A[N-2]$) with $A[i]$
Example

Choose the pivot as the median of three

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Median of 0, 6, 8 is 6. Pivot is 6

| 0 | 1 | 4 | 9 | 7 | 3 | 5 | 2 | 6 | 8 |

Place the largest at the right and the smallest at the left. Swap pivot with next to last element.
Example

Move i to the right up to $A[i]$ larger than pivot.
Move j to the left up to $A[j]$ smaller than pivot.
Swap
Example

Cross-over $i > j$

$S_1 < \text{pivot}$ pivot $S_2 > \text{pivot}$
Recursive Quicksort

Quicksort(A[]): integer array, left,right : integer): {
 pivotindex : integer;
 if left + CUTOFF ≤ right then
 pivot := median3(A,left,right);
 pivotindex := Partition(A,left,right-1,pivot);
 Quicksort(A, left, pivotindex – 1);
 Quicksort(A, pivotindex + 1, right);
 else
 Insertionsort(A,left,right);
}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.
Quicksort Best Case Performance

• Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
 › T(0) = T(1) = O(1)
 • constant time if 0 or 1 element
 › For N > 1, 2 recursive calls plus linear time for partitioning
 › T(N) = 2T(N/2) + O(N)
 • Same recurrence relation as Mergesort
 › T(N) = \(O(N \log N)\)
Analysis Upper Bound

\[T(n) \leq 2T(n/2) + dn \quad \text{Assuming } n \text{ is a power of 2} \]
\[\leq 2(2T(n/4) + dn/2) + dn \]
\[= 4T(n/4) + 2dn \]
\[\leq 4(2T(n/8) + dn/4) + 2dn \]
\[= 8T(n/8) + 3dn \]
\[\vdots \]
\[\leq 2^k T(n/2^k) + kdn \]
\[= nT(1) + kdn \quad \text{if } n = 2^k \quad \quad n = 2^k, \ k = \log n \]
\[\leq cn + dn \log_2 n \]
\[= O(n \log n) \]
Quicksort Worst Case Performance

• Algorithm always chooses the worst pivot – one sub-array is empty at each recursion
 › \(T(N) \leq T(N-1) + bN \)
 › \(\leq T(N-2) + b(N-1) + bN \)
 › \(\leq T(2) + b(3) + \ldots + bN \)
 › \(\leq T(1) + b(2 + 3 + \ldots + N) \)
 › \(T(N) = \mathcal{O}(N^2) \)

• Fortunately, \textit{average case performance} is \(\mathcal{O}(N \log N) \) (not a simple analysis)
Properties of Quicksort

- Not stable because of long distance swapping.
- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- “In-place”, but uses auxiliary storage because of recursive call ($O(\log n)$ space).
 - Choose smallest partition first in the recursion
- $O(n \log n)$ average case performance, but $O(n^2)$ worst case performance.
Folklore

• “Quicksort is the best in-memory sorting algorithm.”

• Truth
 › Quicksort uses very few comparisons on average.
 › Quicksort does have good performance in the memory hierarchy.
 • Small footprint
 • Good locality