Hashing

CSE 373
Data Structures
Readings

• Reading
 › Chapter 9 Sections 9.1 – 9.3
The Need for Speed

- Data structures we have looked at so far
 - Use comparison operations to find items
 - Need $O(\log N)$ time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more)
 - $\log N$ is between 6.6 and 16.6
- **Maps** and their implementation as **Hash tables** are an abstract data type designed for $O(1)$ Find and Inserts
The Map ADT

• **Usual:** `size()` and `isEmpty()`
• **Search:** `find(k)` (or `get(k)`) returns `v`
• **Add an entry:** `insert(k,v)` (or `put(k,v)`)
• **Delete an entry:** `delete(k)` (or `remove(k)`) returns `v`

• The cases where for insert/delete when the key is already there/not there
Fewer Functions Faster

• compare lists and stacks
 › by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
 › insert(L,X) into a list versus push(S,X) onto a stack

• compare bst’s and hash tables
 › trees provide for known ordering of all elements
 › maps just let you (quickly) find an element but can’t list elements in order “fast”
Limited Set of Map Operations

• For many applications, a limited set of operations is all that is needed
 › Insert, Find, and Delete
 › Note that no ordering of elements is implied

• For example, a compiler needs to maintain information about the symbols in a program
 › user defined
 › language keywords
Direct Address Tables

• Direct addressing using an array is very fast
• Assume
 › keys are integers in the set \(U = \{0, 1, \ldots, m-1\} \)
 › \(m \) is small
 › no two elements have the same key
• Then just store each element at the array location \(\text{array}[\text{key}] \) (a bucket for the key)
 › search, insert, and delete are trivial
Direct Access Table

U (universe of keys)

K (Actual keys)

Table:

<table>
<thead>
<tr>
<th>key</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
An Issue

- If most keys in U are used
 - direct addressing can work very well (m small)
- The largest possible key in U, say m, may be much larger than the number of elements actually stored (|U| much greater than |K|)
 - the table is very sparse and wastes space
 - in worst case, table too large to have in memory
- If most keys in U are not used
 - need to map U to a smaller set closer in size to K
Mapping the Keys

Key Universe

Hash Function

Table indices

Hashing
Hashing Schemes

- We want to store N items in a table of size M, at a location computed from the key K
- **Hash function**
 - Method for computing table index from key
- **Need of a collision resolution strategy**
 - How to handle two keys that hash to the same index
“Find” an Element in an Array

• Data records can be stored in arrays.
 › A[0] = {“CHEM 110”, Size 89}
 › A[17] = {“CSE 373”, Size 42}

• Class size for CSE 373?
 › Linear search the array – O(N) worst case time
 › Binary search - O(log N) worst case
Go Directly to the Element

- What if we could directly index into the array using the key?
 - A[“CSE 373”] = {Size 42}
- Main idea behind hash tables
 - Use a key based on some aspect of the data to index directly into an array
 - O(1) time to access records
Indexing into Hash Table

• Need a fast hash function to convert the element key (string or number) to an integer (the hash value) (i.e., map from U to index)
 › Then use this value to index into an array
 › Hash(“CSE 373”) = 157, Hash(“CSE 143”) = 101

• Output of the hash function
 › must always be less than size of array
 › should be as evenly distributed as possible
Choosing the Hash Function

• What properties do we want from a hash function?
 › Want universe of hash values to be distributed randomly to minimize collisions
 › Don’t want systematic nonrandom pattern in selection of keys to lead to systematic collisions
 › Want hash value to depend on all values in entire key and their positions
The Key Values are Important

• Notice that one issue with all the hash functions is that the actual content of the key set matters

• The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
 › variable names, words in the English language, reserved keywords, telephone numbers, etc, etc
Simple Hashes

• It's possible to have very simple hash functions if you are certain of your keys
• For example,
 › suppose we know that the keys \(s \) will be real numbers uniformly distributed over \(0 \leq s < 1 \)
 › Then a very fast, very good hash function is
 • \(\text{hash}(s) = \text{floor}(s \cdot m) \)
 • where \(m \) is the size of the table
Example of a Very Simple Mapping

- hash(s) = floor(s·m) maps from $0 \leq s < 1$ to $0..m-1$
 - $m = 10$

Note the even distribution. There are collisions, but we will deal with them later.
Perfect Hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values.
- You must know every single key beforehand and be able to derive a function that works one-to-one.
Mod Hash Function

- One solution for a less constrained key set
 - modular arithmetic
- a mod size
 - remainder when "a" is divided by "size"
 - in Java this is written as \(r = a \% \text{size}; \)
 - If TableSize = 251
 - 408 mod 251 = 157
 - 352 mod 251 = 101
Modulo Mapping

• $a \mod m$ maps from integers to $0..m-1$
 › one to one? no
 › onto? Yes (for every bucket there is a possible key)
Hashing Integers

• If keys are integers, we can use the hash function:
 › Hash(key) = key mod TableSize

• Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, …)
 › all keys map to the same index
 › Need to pick TableSize carefully: often, a prime number
Nonnumerical Keys

• Many hash functions assume that the universe of keys is the natural numbers $\mathbb{N} = \{0, 1, \ldots\}$
• Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
• Generally work with the ASCII character codes when converting strings to numbers
Characters to Integers

- If keys are strings can get an integer by adding up ASCII values of characters in key
- We are converting a very large string $c_0c_1c_2 \ldots c_n$ to a relatively small number $c_0+c_1+c_2+\ldots+c_n \mod \text{size}$.

<table>
<thead>
<tr>
<th>character</th>
<th>C</th>
<th>S</th>
<th>E</th>
<th>3</th>
<th>7</th>
<th>3</th>
<th><0></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII value</td>
<td>67</td>
<td>83</td>
<td>69</td>
<td>32</td>
<td>51</td>
<td>55</td>
<td>51</td>
</tr>
</tbody>
</table>
Hash Must be Onto Table

- **Problem 2**: What if $TableSize$ is 10,000 and all keys are 8 or less characters long?
 - chars have values between 0 and 127
 - Keys will hash only to positions 0 through $8 \times 127 = 1016$
- Need to distribute keys over the entire table or the extra space is wasted
Problems with Adding Characters

- Problems with adding up character values for string keys
 - If string keys are short, will not hash evenly to all of the hash table
 - Different character combinations hash to same value
 - “abc”, “bca”, and “cab” all add up to the same value (recall this was Problem 1)
Characters as Integers

• An character string can be thought of as a base 256 number. The string $c_1c_2...c_n$ can be thought of as the number $c_n + 256c_{n-1} + 256^2c_{n-2} + ... + 256^{n-1}c_1$

• Use Horner’s Rule to Hash!

```python
r = 0;
for i = 1 to n do
  r := (c[i] + 256*r) mod TableSize
```
Collisions

• A collision occurs when two different keys hash to the same value
 › E.g. For $TableSize = 17$, the keys 18 and 35 hash to the same value for the mod17 hash function
 › $18 \mod 17 = 1$ and $35 \mod 17 = 1$

• Cannot store both data records in the same slot in array!
Collision Resolution

• Separate Chaining
 › Use data structure (such as a linked list) to store multiple items that hash to the same slot

• Open addressing (or probing)
 › search for empty slots, e.g., using a second function and store item in first empty slot that is found
Resolution by Chaining

• Each hash table cell holds pointer to linked list of records with same hash value
• Collision: Insert item into linked list
• To Find an item: compute hash value, then do Find on linked list
• Note that there are potentially as many as TableSize lists
Why Lists?

• Can use List ADT for Find/Insert/Delete in linked list
 › O(M) runtime where M is the number of elements in the particular chain

• Can also use Binary Search Trees
 › O(log M) time instead of O(M)
 › But the number of elements to search through, M, should be small (otherwise the hashing function is bad or the table is too small)
 › generally not worth the overhead of BSTs
Load Factor of a Hash Table

• Let N = number of items to be stored
• Load factor $\lambda = \frac{N}{\text{TableSize}}$
 › TableSize = 101 and N = 505, then $\lambda = 5$
 › TableSize = 101 and N = 10, then $\lambda = 0.1$
• Average length of chained list = λ and so average
 average time for accessing an item = $O(1) + O(\lambda)$
 › Want λ to be smaller than 1 but close to 1 if good
 hashing function (i.e. TableSize \approx N)
 › With chaining hashing continues to work for $\lambda > 1$
Resolution by Open Addressing

• No links, all keys are in the table
 › reduced overhead saves space
• When searching for \(x \), check locations \(h_1(x), h_2(x), h_3(x), \ldots \) until either
 › \(x \) is found; or
 › we find an empty location (\(x \) not present)
• Various flavors of open addressing differ in which probe sequence they use
Cell Full? Keep Looking.

- \(h_i(X) = (\text{Hash}(X) + F(i)) \mod \text{TableSize} \)
 - Define \(F(0) = 0 \)
- \(F \) is the collision resolution function. Some possibilities:
 - Linear: \(F(i) = i \)
 - Quadratic: \(F(i) = i^2 \)
 - Double Hashing: \(F(i) = i \cdot \text{Hash}_2(X) \)
Linear Probing

• When searching for k, check locations $h(k)$, $h(k)+1$, $h(k)+2$, ... mod TableSize until either
 › k is found; or
 › we find an empty location (k not present)
• If table is very sparse, almost like separate chaining.
• When table starts filling, we get clustering but still constant average search time.
• Full table \Rightarrow infinite loop.
Primary Clustering Problem

- Once a block of a few contiguous occupied positions emerges in table, it becomes a “target” for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells
Quadratic Probing

- When searching for x, check locations $h_1(x)$, $h_1(x) + 1^2$, $h_1(x) + 2^2$, ... mod TableSize until either
 - x is found; or
 - we find an empty location (x not present)
- No primary clustering but secondary clustering possible
Double Hashing

- When searching for \(x \), check locations \(h_1(x) \), \(h_1(x) + h_2(x) \), \(h_1(x) + 2h_2(x) \), ... \(\mod \) Tablesize until either
 - \(x \) is found; or
 - we find an empty location (\(x \) not present)

- Must be careful about \(h_2(x) \)
 - Not 0 and not a divisor of \(m \)
 - eg, \(h_1(k) = k \mod m_1 \), \(h_2(k) = 1 + (k \mod m_2) \)
 where \(m_2 \) is slightly less than \(m_1 \)
Rules of Thumb

• Separate chaining is simple but wastes space…
• Linear probing uses space better, is fast when tables are sparse
• Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
• For average cost (i.e., number of comparisons) of about t
 › Max load for Linear Probing is $1 - 1/\sqrt{t}$
 › Max load for Double Hashing is $1 - 1/t$
Rehashing – Rebuild the Table

• Need to use lazy deletion if we use probing (why?)
 › Need to mark array slots as deleted after Delete
 › consequently, deleting doesn’t make the table any less full than it was before the delete
• If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and Inserts may fail
Rehashing

• Build a bigger hash table of approximately twice the size when λ exceeds a particular value
 › Go through old hash table, ignoring items marked deleted
 › Recompute hash value for each non-deleted key and put the item in new position in new table
 › Cannot just copy data from old table because the bigger table has a new hash function
• Running time is $O(N)$ but happens very infrequently
Rehashing Example

- Open hashing – $h_1(x) = x \mod 5$ rehashes to $h_2(x) = x \mod 11$.

\[\lambda = 1 \]

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
25 & 37 & 83 & 52 & 98 \\
\end{array}
\]

\[\lambda = 5/11 \]

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
25 & 37 & 83 & 52 & 98 \\
\end{array}
\]
Caveats

- Hash functions are very often the cause of performance bugs.
- Hash functions often make the code not portable.
- If a particular hash function behaves badly on your data, then pick another.
- Always check where the time goes